

FSA Modernization Partner

Enterprise Application Integration (EAI)
Core Release 3.0

Application Enablement Guide (Preliminary)

Version 1.0

Task Order 80

Deliverable 80.1.4a

June 28, 2002

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 2

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 8

1.1 PURPOSE... 8

1.2 APPROACH ... 8

1.3 DESCRIPTION OF SECTIONS ... 8

1.4 SCOPE.. 9

1.5 INTENDED AUDIENCE .. 9

2 MQSERIES ARCHITECTURE CONVENTIONS AND GUIDELINES 11

2.1 MQSERIES NAMING GUIDELINES... 11
2.1.1 Common Rules.. 11
2.1.2 Queue Manager .. 12

2.1.2.1 Naming Convention for MQSeries Queue Manager for Mainframe (CPS and
NSLDS on OS/390) 13
2.1.2.2 Naming convention of the MQSeries Queue Managers for all other platforms
 13

2.1.3 Local Queues .. 14
2.1.4 Remote Queues ... 15
2.1.5 Alias Queues... 15
2.1.6 Model and Dynamic Queues ... 16

2.1.6.1 Model Queue Naming Conventions 16
2.1.7 Transmission Queues .. 17
2.1.8 Dead Letter Queues .. 17
2.1.9 Initiation Queues .. 18
2.1.10 Processes.. 18
2.1.11 Channels .. 18

2.2 MQSERIES APPLICATION MESSAGING INTERFACE (AMI) NAMING GUIDELINES 19
2.2.1 Service Points ... 19
2.2.2 Policies... 20

2.3 USING A MQSERIES OBJECT ... 21
2.3.1 Channels... 21
2.3.2 Queues.. 21

2.4 MQSERIES MESSAGING IMPLEMENTATION GUIDELINES... 22

2.5 MQSERIES CLUSTER DESIGN GUIDELINES .. 23
2.5.1 Selecting Queue Managers to Hold Repositories... 23
2.5.2 Organizing a cluster ... 24
2.5.3 Overlapping clusters... 25
2.5.4 In the Unlikely Event of a Repository Failure.. 26
2.5.5 Cluster channels ... 26

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 3

2.6 MQSERIES CLUSTER IMPLEMENTATION GUIDELINES.. 27

2.7 FSA CLUSTER SPECIFICS ... 28
2.7.1 Physical layout of the cluster .. 28

2.7.1.1 Cluster configuration – Development/Test 30
2.7.1.2 Cluster configuration – Production 32

2.8 MQSERIES SECURITY STANDARDS ... 34
2.8.1.1 Data Encryption Policy (internal to FSA) 34
2.8.1.2 Data Encryption Policy (external to FSA) 35

2.9 EAI MQSERIES SECURITY IMPLEMENTATION GUIDELINES 35
2.9.1 EAI Application Consideration ... 35

2.10 MQSERIES WEBSPHERE DESIGN GUIDELINES .. 36
2.10.1 WebSphere Connectors... 36

2.10.1.1 Common Connector Framework 37
2.10.1.2 Build Your Own Connector 37

2.10.2 Architecture look and feel ... 38
2.10.3 FSA EAI WebSphere Reusable Component ... 39

2.10.3.1 WebSphere MQ Adapter Overview 39

3 DATA INTEGRATOR ARCHITECTURE CONVENTIONS AND GUIDELINES 40

3.1 DATA INTEGRATOR STANDARDS.. 40
3.1.1 Bi-Directional Sending ... 40
3.1.2 Pool Architecture.. 40
3.1.3 Scripts .. 40
3.1.4 Configuration file ... 40

3.2 DATA INTEGRATOR IMPLEMENTATION... 40

4 MQSERIES INTEGRATOR ARCHITECTURE CONVENTIONS AND GUIDELINES 42

4.1 MQSI NAMING STANDARDS.. 42
4.1.1 Common Rules.. 42
4.1.2 Brokers ... 42
4.1.3 Execution Groups ... 42
4.1.4 Message Flows.. 43
4.1.5 Message Sets... 43
4.1.6 Messages .. 44
4.1.7 Message Flow Nodes .. 44

4.1.7.1 Check 44
4.1.7.2 Compute 45
4.1.7.3 Database 45
4.1.7.4 DataDelete 46
4.1.7.5 DataInsert 46
4.1.7.6 DataUpdate 46
4.1.7.7 Extract 47

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 4

4.1.7.8 Filter 47
4.1.7.9 FlowOrder 47
4.1.7.10 Input Terminal 48
4.1.7.11 Label 48
4.1.7.12 MQInput 48
4.1.7.13 MQOutput 49
4.1.7.14 MQReply 49
4.1.7.15 NeonFormatter 49
4.1.7.16 NeonRules 50
4.1.7.17 Output Terminal 50
4.1.7.18 Publication 50
4.1.7.19 ResetContentDescriptor 51
4.1.7.20 RouteToLabel 51
4.1.7.21 Throw 51
4.1.7.22 Trace 52
4.1.7.23 TryCatch 52
4.1.7.24 Warehouse 52

4.2 MQSI IMPLEMENTATION GUIDELINES ... 53

5 FSA APPLICATION ENABLEMENT GUIDELINES 54

5.1 APPLICATION PROGRAMS AND MESSAGING .. 54

5.2 APPLICATION USAGE GUIDELINES FOR MQSERIES ... 54
5.2.1 Identifying an Application for a Queue Manager .. 55
5.2.2 Opening and Closing Queues.. 56

5.2.2.1 MQOPEN Call 56
5.2.2.2 MQCLOSE Call 56

5.2.3 Putting Messages On A Queue .. 57
5.2.4 Getting Messages From A Queue .. 57

5.2.4.1 MQGET Call 58
5.2.5 Queue Manager Connectivity Guidelines .. 58
5.2.6 Connecting To and Disconnecting From a Queue Manager .. 59
5.2.7 Pass the Connection Name as a Program Parameter .. 59
5.2.8 Messaging Using More Than One Queue Manager ... 60

5.3 APPLICATION USAGE GUIDELINES FOR MQSERIES APPLICATION MESSAGING
INTERFACE (AMI) .. 60

5.3.1 AMI Connectivity Guidelines .. 61
5.3.2 Establishing and Terminating AMI Sessions ... 61
5.3.3 AMI Sender and AMI Receiver Objects ... 61

5.3.3.1 Using AMI Sender objects 61
5.3.3.2 Using AMI Receiver objects 61

5.4 APPLICATION INTERFACE PROGRAMMING OPTIONS FOR MESSAGE QUEUE
INTERFACE (MQI) .. 62

5.4.1 Message Delivery.. 62
5.4.1.1 Message Queue Interface (MQI) 62

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 5

5.4.1.2 Java Message Service (JMS) 63
5.4.1.3 Application Messaging Interface (AMI) 63

5.4.2 Message Content... 63
5.4.2.1 Extensible Markup Language (XML) 63

5.5 EAI COMMON ERROR HANDLING GUIDELINES .. 65
5.5.1 Failure of a MQI Call... 65
5.5.2 System Interruption... 65
5.5.3 Unable to Process Messages ... 65
5.5.4 Responding to Errors.. 65

5.6 TRIGGERED QUEUES AND APPLICATIONS... 66
5.6.1 Designing MQSeries Applications... 66
5.6.2 Starting MQSeries Applications .. 67

5.7 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATOR 68
5.7.1 Data Integrator Components .. 68

5.7.1.1 e-Adapter Manager 68
5.7.1.2 e-Adapter Sender 68
5.7.1.3 e-Adapter Receiver 68

5.7.2 Common Script Arguments ... 68
5.7.2.1 Queue Manager Arguments 68
5.7.2.2 Source/Target File Arguments 69
5.7.2.3 Process Arguments 69
5.7.2.4 User Exit Arguments 69
5.7.2.5 Data Specification Arguments 69
5.7.2.6 OS/390 Arguments 69
5.7.2.7 Additional Script Arguments 69

5.8 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATOR STATUS UTILITY... 70
5.8.1 Storing the status messages... 70
5.8.2 Retrieving the status messages .. 70

5.9 APPLICATION USAGE GUIDELINES FOR MQSERIES INTEGRATOR.......................... 70
5.9.1 Defining Messages.. 70

5.9.1.1 Message domains 70
5.9.1.2 Unstructured messages in the BLOB domain 71
5.9.1.3 Self-defining messages in the XML domain 71
5.9.1.4 Predefined messages in the MRM domain 71

5.9.2 Designing Message Flows... 72
5.9.2.1 Message flows and units of work 73
5.9.2.2 Parallel processing of message flow instances 73
5.9.2.3 Transformation 73
5.9.2.4 Intelligent routing 74
5.9.2.5 Enriching message content 74

5.9.3 Using Message Processing Nodes ... 74
5.9.3.1 MQSI Primitives 74
5.9.3.2 Common node characteristics 76
5.9.3.3 Input and output nodes 76

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 6

5.9.3.4 Processing messages 77
5.9.3.5 Error handling 77
5.9.3.6 Adding or enhancing message processing nodes 78

5.9.4 Assigning and Deploying Resources to Brokers .. 78

6 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES) 79

6.1 MQSERIES APPLICATION ADAPTER .. 79

6.2 ADAPTER CLASSIFICATIONS .. 79
6.2.1 Type of Message ... 79
6.2.2 Interface Type... 79

6.3 MQSERIES-CICS/ESA BRIDGE.. 80
6.3.1 Using the CICS Bridge ... 80
6.3.2 CICS Bridge at Work.. 80

6.4 RUNNING CICS DPL PROGRAMS .. 81
6.4.1 Running CICS 3270 transactions .. 82

7 APPLICATION INTEGRATION EXAMPLES 84

7.1 DATA INTEGRATOR EXAMPLE... 84

7.2 MQSERIES INTEGRATOR EXAMPLE .. 85

7.3 ADAPTER EXAMPLE ... 86

8 REUSEABLE EAI FUNCTIONS 87

8.1 EAI COMMON LOG FUNCTION.. 87
8.1.1 Interface Design Specification .. 87
8.1.2 Interface Overview.. 87

8.1.2.1 Detailed Technical Overview 88
8.1.2.2 Background EAI Logging Objectives 88
8.1.2.3 Logging Thresholds Provided via EAI Logging facility 89
8.1.2.4 Configuration Parameters 90
8.1.2.5 Component Model 90

8.1.3 Design Assumptions.. 91
8.1.4 Design Dependencies .. 92
8.1.5 Detailed Technical Design .. 92

9 COMMITTING AND BACKING OUT UNITS OF WORK 94

9.1 COMMITTING AND BACKING OUT... 94

9.2 SYNCPOINT COORDINATION, SYNCPOINT, UNIT OF WORK..................................... 94

9.3 SYNCPOINT GUIDELINES... 94
9.3.1 Syncpoints in MQSeries for Windows NT, MQSeries on UNIX systems 95

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 7

9.3.2 Local units of work ... 95
9.3.3 Global units of work ... 95
9.3.4 Internal syncpoint coordination .. 95
9.3.5 External syncpoint coordination ... 96
9.3.6 Interfaces to external syncpoint managers... 97

9.4 MQSERIES SYNCPOINT CALLS FOR OS/390.. 98

9.5 MQSERIES SYNCPOINT CALLS ON WINDOWS NT AND UNIX SYSTEMS................. 98

9.6 SINGLE-PHASE COMMIT .. 99

9.7 TWO-PHASE COMMIT... 99

10 APPENDIX A: REFERENCE MATERIAL 100

11 APPENDIX B: GLOSSARY 102

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 8

1 EXECUTIVE SUMMARY

1.1 PURPOSE

The EAI Application Enablement Guide was developed in support of the Department of Education’s
Federal Student Aid (FSA) Modernization Program, to provide an overview of the MQSeries Messaging
functionality being implemented as part of the Enterprise Application Integration (EAI) project. The EAI
provides a standard reusable architecture for connecting disparate, heterogeneous systems through common
middleware architecture. The EAI architecture is built using the following middleware products: MQSeries
Messaging, MQSeries Integrator, and Data Integrator. This deliverable defines the guidelines for enabling
FSA application developers to design and implement applications utilizing the features of the EAI Core
architecture. This includes work done in Release 1.0, 2.0, and 3.0 of EAI.

The deliverable also serves to provide a high level overview of the features and capabilities of the FSA EAI
Messaging infrastructure architecture and product capabilities. This deliverable should be the initial
reading for all application developers who will be developing applications to interface to the EAI Bus at
FSA.

The document is intended to be a living document and a repository of MQSeries best practices and
guidelines, which can be adopted by FSA for the implementation of EAI applications.

1.2 APPROACH

The following approach was used to develop the EAI Application Enablement Guide deliverable:

• Review and modify industry best practices to meet the FSA EAI Core Architecture requirements

• Incorporate additional steps required for applications to integrate and utilize the FSA EAI Core
Architecture

• Update Release 2.0 Enablement Guide sections where necessary

• Add sections pertinent to Release 3.0

1.3 DESCRIPTION OF SECTIONS

This deliverable is divided into the following sections:

• Section 1 – Executive Summary

This section provides an introduction and overview of the EAI Application Enablement Guide.

• Section 2 – MQSeries Architecture Conventions and Guidelines
This section will provide guidance on naming conventions for using MQSeries in the FSA EAI architecture.
The guidelines provide guidance in defining and implementing MQSeries objects.

• Section 3 – Data Integrator Architecture Conventions and Guidelines
This section will discuss the Data Integrator standards that have been developed and provide suggestions for
design and implementation of Data Integrator.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 9

• Section 4 – MQSeries Integrator Architecture Conventions and Guidelines

This section will provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI
architecture.

• Section 5 – FSA Application Enablement Guidelines

This section provides an overview of messaging and provides specific steps an application needs to perform
in order to connect to a queue manager and to send and receive messages.

• Section 6 -- Application Connectivity (Adapters and Bridges)

This section discusses the use of adapters and bridges. Adapters handle data inbound-to and outbound-from
the application or environment. A bridge is a software component that moves data between a message on a
queue and an application or environment.

• Section 7 – Application Integration Examples
This section will provide guidance on integrating FSA Applications to utilize the EAI Core Architecture
through illustrative examples.

• Section 8 – Reusable EAI Functions

This section describes reusable EAI functions that can be utilized by applications integrated with the EAI
Core Architecture.

• Section 9 – Committing and Backing Out Units of Work
This section describes how to commit and back out any recoverable get and put operations. It also
describes applications and their use of operating under syncpoint control.

• Section 10 – Appendix A: Reference Material

This section provides URL links to on-line documentation referenced within this document.

• Section 11 – Appendix B: Glossary

This section provides a glossary of MQSeries related terms and abbreviations. In addition, it includes
terms and abbreviations found in this document.

1.4 SCOPE

The scope of this deliverable is to provide guidelines and best practices for designing and implementing
interfaces between applications using the EAI Bus (EAI core architecture). The guidelines defined in this
deliverable are based on best practices. They provide a structured approach for defining a consistent and
maintainable environment.

1.5 INTENDED AUDIENCE

The EAI Application Enablement Guide document is intended for application teams who need to
understand the services and capabilities provided by the EAI Core Architecture. The contents of this

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 10

document should be utilized and built upon in accordance with requirements for applications integrating
with the EAI Core Architecture.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 11

2 MQSERIES ARCHITECTURE CONVENTIONS AND GUIDELINES

Prior to Modernization Partner’s EAI implementation, FSA had not previously utilized MQSeries as part
of its existing middleware infrastructure. During Release 1.0 of this implementation standards were
implemented and documented in the Release 1.0 version of the Enablement Guide. With each subsequent
EAI Release, the Enablement Guide has been updated. This section provides guidance on naming
conventions for using MQSeries in the FSA EAI architecture. These guidelines are meant to provide
guidance in defining and implementing MQSeries objects.

These standards have been developed in conjunction with the AIS group from Computer Science
Corporation, which will be responsible for monitoring FSA queue managers.

2.1 MQSeries Naming Guidelines

This section defines MQSeries Messaging naming guidelines for MQSeries objects within FSA’s enterprise
technical architecture.

2.1.1 Common Rules

All MQSeries names should follow MQSeries naming conventions, rather than the standard for object
names on each supported platform. Key standards and guidelines:

• Use all upper case letters (some platforms default text to upper case and MQSeries names are case sensitive)

− MQSeries allows both upper and lower case letters in its names. However, MQSeries names are case-
sensitive. Using lower and uppercase characters for object names is a common source for naming errors.

• Refrain from using % in names

− This character is valid in all MQSeries names, although it is not commonly used in other names across
platforms.

• Limit names to alpha–numeric characters

− Exceptions are the special characters [_ / .]

• Choose meaningful names within the constraint of the standard.

− Using meaningful names aids the MQSeries Administrator in maintaining the MQSeries environment.

− There is no required structure, or hierarchy, in an object name, such as may be found on many systems'
file names. MQSeries only compares the name strings.

− These standards recommend using hierarchical names under certain conditions. One such example is to
use a suffix where there are multiple “instances” of an object.

• Document object names and always include a description.

− All objects have a DESCR attribute for this purpose. MQSeries does not act on the value, but it
provides additional information as to the function of the queue.

• Choose meaningful names for new MQSeries interfaces.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 12

− Each application to be integrated using MQSeries creates one or more MQSeries interfaces. The
MQSeries interface defines or exposes some application to the outside world. Implied in an interface is a
level of reliability and performance commonly referred to as a contract. Any other component can
request and receive a service by awareness and compliance with a defined interface. The application does
not need to know how or where the service is performed. The interface becomes a DMZ between an
application and the outside world, so changes to the interface may cause repercussions across all users of
the interface. XML has become one solution to the static nature of interfaces because it allows for self-
defining and extensible interfaces. Still XML does not solve all issues and problems with interface
definitions.

• Name an interface for what it does and is, because MQSeries interface names tend to surface in the
naming of MQSeries components related to the interface.

• Save the definitions
There are a number of reasons for saving the definitions:

− In the case of a system failure, objects may need to be recreated. To perform this function, the
definitions need to be saved separately from the queue manager.

− They can be used to reset the attributes to a known state. For example if triggering has been turned off,
or GET or PUT disabled, it is helpful to be able to restore the objects to their initial state.

− The definitions can supplement the MQSeries documentation.

2.1.2 Queue Manager

A queue manager provides the messaging and queuing services to application programs through Message
Queue Interface (MQI) program calls. Queue manager names are created at the sole discretion of
MQSeries administrators. The following guidelines should be followed when naming queue managers:

• Assign unique names to all queue managers

− This recommendation can often cause significant problems if queue manager names are not unique.
(On MVS, the queue manager name must also be distinct from other subsystem names on the same
MVS.)

− A queue manager can be understood as a “container” for queues and related objects. There is typically
one per system, but additional queue managers can be defined.

− Queue Managers with the same name can be configured to exchange messages - by using Queue
Manager aliases. This is strongly discouraged. There are some examples where this can lead to
ambiguity, and messages can then be sent to the wrong queue manager.

o If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts the actual local
Queue Manager name, not its alias.

o Dead Letter Queue messages identify the real Queue Manager, not any alias.

• Do not copy documentation examples

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 13

− Copying the documentation examples provided with the installation files is an easy way to produce
queue managers with duplicate names. Plan for the names of queue managers ahead of time.

• Keep the queue manager name short and meaningful

A recommendation would be to make queue manager names the same as the network host name. However,
keep the following points in mind:

− On MVS, the queue manager name corresponds to the MVS subsystem name. Therefore, the queue
manager name is restricted to four characters.

− Many queue managers use the first eight characters when generating unique message identifiers.

− Channel names, which by convention are derived from queue manager names, are limited to 20
characters.

− If there were no obvious name, most users would adopt a convention for constructing a queue manager
name. Make sure that the convention provides for further expansion, particularly where the restricted
names on MVS are concerned.

• For a Queue Manager alias, use the naming conventions for the specific platform

− This feature is usually related to defining multiple channels between a pair of queue managers.

2.1.2.1 Naming Convention for MQSeries Queue Manager for Mainframe (CPS and NSLDS on OS/390)

Naming examples for MQSeries queue managers on the OS/390 are illustrated below. OS/390 queue
manager names are limited to 4 characters in length.

Examples:

 QMP1

QM – Indication that STC(Started Task) is for a queue manager

 P – Production (D(development), P(production), or T(test))

 1 – First instance

 QMP2

 QM – Indication that STC(Started Task) is for a queue manager

 T –Test (D(development), P(production), or T(test))

 2 – Second instance

2.1.2.2 Naming convention of the MQSeries Queue Managers for all other platforms

On Non-MVS platforms the queue manager name should not exceed 8 characters. Queue manager names
on distributed platforms will be based on the nature of the work performed, with indicators for environment
and distance. For example, EAIBUSP1 is the first instance of a production queue manager on the EAI Bus.
PEPSD1 would be the first instance of a queue manager in the PEPS development environment.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 14

Examples:

SAIGT1

 SAIG – Student Aid Internet Gateway queue manager

 T – Test(D(development), P(production), or T(test))

 1 – First instance

Queue Manager Names can also have aliases. This adds another layer of “insulation and abstraction” from
the underlying object name. Message routing using alias queue manager names is an example of their use.
Consolidation of multiple queue managers to one queue manager is also a way to make use of queue
manager alias names to minimize the impact of the consolidation on MQSeries application programs and
the MQ Administrator. Although queue manager alias objects are defined via remote queue definitions, they
should be named according to queue manager naming guidelines.

2.1.3 Local Queues

As a rule, applications will never reference local queues directly but will always access them via alias
queues.

A local queue object defines a local queue belonging to the queue manager to which applications are
connected. The following guidelines should be adhered to when naming local queues:

• Local queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Local queue names should not include the name of the queue manager or an indication of the platform
used.

• Local queue names should not indicate that the queue is local.

• Local queue names should not include the words local or queue (unless relevant in the context of the
application).

• Local queue names should be of the form:

FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

− The first node is five or six characters indicating the name of the system that owns the object.
This will be useful when applications from multiple business units share the same machine/queue
manager.

− The second node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The third node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The fourth node is any number of characters, such that entire queue name does not exceed 48
characters in length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 15

Examples:
SAIG.GETMAIL
SAIG.ONLINE.COD.GETMAIL
SAIG.COD.GETMAIL

2.1.4 Remote Queues

As a rule, applications will never reference remote queues directly but will always access them via alias
queues.

A remote queue object identifies a queue belonging to another queue manager. The remote queue is usually
given a local definition. The definition specifies the name of the remote queue manager where the queue
exists as well as the name of the remote queue itself. The information specified when defining a remote
queue object enables the queue manager to find the remote queue manager, so that any messages destined
for the remote queue go to the correct queue manager. The following guidelines should be adhered to when
naming remote queues:

• Remote queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Remote queue names should be of the form:

TARGETQM.TARGETLOCALQUEUE

− The first node indicates which queue manager owns the local queue that it references.

− The second node is the name of the local queue referenced by this remote queue.

This is done to provide operations with a clear view of message flow. Since applications never
reference remote queues directly, a change in remote queue name or properties would not have any
adverse effect nor require any modifications.

Examples:
SAIGP1.SAIG.GETMAIL
SAIGP1.SAIG.ONLINE.COD.GETMAIL
SAIGP1.SAIG.COD.GETMAIL

2.1.5 Alias Queues

An alias queue object enables applications to access queues by referring to them indirectly in MQI calls.
When an alias queue name is used in an MQI call the name is resolved to the name of a message queue at
run time. This enables changes to the queues that applications use without changing the application itself
in any way. The following guidelines should be adhered to when naming alias queues:

• Alias queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Alias queue names should not include the name of the queue manager or an indication of the platform
used.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 16

• Alias queue names should not indicate that the queue is an alias.

• Alias queue names should not include the words alias or queue (unless relevant in the context of the
application).

• Alias queue names can be of the form:

TARGETQUEUE.[MODE]

− The first node is the name of the local or remote queue referenced by this alias queue.
− The second node is an indicator or whether this queue is to be enqueued (.PUT) or dequeued

(.GET).

Examples:
SAIG.GETMAIL.PUT
SAIG.ONLINE.COD.GETMAIL.GET
SAIG.COD.GETMAIL.PUT

Alias queues which are to be used to enqueue will be GET(DISABLED), while alias queues which are
to be used to dequeue will be PUT(DISABLED).

2.1.6 Model and Dynamic Queues

The model queue object defines a set of queue attributes that are used as a template for a dynamic queue.
The queue manager creates dynamic queues when an application makes an open queue request specifying a
queue that is a model queue. The dynamic queue that is created in this way is a local queue whose name is
specified by the application and whose attributes are the same as the model queue.

2.1.6.1 Model Queue Naming Conventions

Generally, model queue names should be of the form:

FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

− The first node is five or six characters indicating the name of the system that owns the object.
This will be useful when applications from multiple business units share the same machine/queue
manager.

− The second node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The third node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The fourth node is any number of characters, such that entire queue name does not exceed 48
characters in length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 17

2.1.7 Transmission Queues

A transmission queue temporarily stores messages that are destined for a remote queue manager.
Transmission queues must be defined for each remote queue manager that a local queue manager will send
messages to. It is possible to associate several transmission queues with different characteristics with a
remote queue manager. This allows different classes of transmission service. The following guidelines
should be adhered to when naming transmission queues:

• Transmission queue names will include the name of the adjacent (i.e. directly connected) queue
manager. The transmission queue name will be the name of the destination queue manager only in the
case where the destination queue manager is directly connected with the sending queue manager.
Otherwise, the transmission queue name will be the name of some other queue manager that will play
the middle party in a multi-hop message transfer to the destination queue manager.

• If there is only one channel to the queue manager, use the exact name of the adjacent queue manager.

• If there will be multiple channels to the queue manager, use the adjacent queue manager name followed
by a dot and some class of service.

• If the exact queue manager name is not used, appropriate queue manager alias definitions need to be
provided to allow MQSeries to perform queue manager name resolution.

• Transmission queue names should be of the form:

AdjacentQueueManagerName[.ClassOfService]

Examples:
SAIGP1
QMT1
PEPSP2.B

The only class of service defined at this time is batch which is indicated by a ‘.B’ suffixed to the queue
name. The class of service will provide a mechanism for separating message traffic by type and
service level required. For FSA, any traffic not batch in nature will use the default transmission queue
and associated channels.

2.1.8 Dead Letter Queues

A dead-letter queue (also known as an undelivered-message queue) receives messages that cannot be routed
to their correct destinations. This occurs when, for example:
• The destination queue is full

• The message cannot be put on the destination queue

• The sender is not authorized to use the destination queue

• The destination queue does not exist

The following guidelines should be adhered to when naming dead-letter queues:

SYSTEM.DEAD.LETTER.QUEUE will always be used.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 18

2.1.9 Initiation Queues

An initiation queue receives trigger messages, which indicate that a trigger event has occurred. A trigger
event is caused by a message that satisfies the specified conditions being put onto a queue. Messages are
read from the initiation queue by a trigger monitor application that then starts the appropriate application to
process the message. If triggers are active, at least one initiation queue must be defined for each queue
manager. The following guidelines should be adhered to when naming initiation queues:
• Initiation queue names should be of the form:

FIRSTNODE.SECONDNODE.THIRDNODE.

− The first node should contain the system name.

− Use of the second node is dependent on the system name.

− The third node should be INIT or INITQ, literal standing for the initiation queue.

Example:
CPS.BATCH.INIT
CPT1.CICSDEV2.INITQ

2.1.10 Processes

A process definition object defines an application to an MQSeries queue manager. Typically in MQSeries,
an application puts or gets messages from one or more queues and processes them. A process definition
object is used for defining applications to be started by a trigger monitor. The definition includes the
application ID, the application type, and application specific data. A process may only be used to service a
single local queue.

The following guidelines should be adhered to when naming processes:

• Process names should not include the name of the queue manager or an indication of the platform used.

• All process names should be of the form:

LOCALQUEUE.PRC

− The first node is the local queue served by this process

− The second node is the ‘PRC’ literal indicating this MQSeries object is a process definition.

Examples:
SAIG.GETMAIL.PRC
SAIG.ONLINE.COD.GETMAIL.PRC
SAIG.COD.GETMAIL.PRC

2.1.11 Channels

A channel provides a communication path. There are two types of channels, message channels and MQI
channels. A message channel provides a communication path between two queue managers on the same, or
different, platforms. The message channel is used for the transmission of messages from one queue
manager to another, and shields the application programs from the complexities of the underlying

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 19

networking protocols. A message channel can transmit messages in only one direction. If two-way
communication is required between two queue managers, two message channels are required.

An MQI channel connects an MQSeries client to a queue manager on a server machine. It is for the
transfer of MQI calls and responses only and is bi-directional. A channel definition exists for each end of
the link. The following guidelines should be adhered to when naming channels:
• Channel names can be up to 20 characters long.

• Channel names should be of the form:

SendingQM.ReceivingQM[.ClassOfService]

− SendingQM is the name of the sending queue manager (without the _QM).

− ReceivingQM is the name of the receiving queue manager (without the _QM).

− ClassOfService is optional and is used to distinguish between different classes of service between
the same two queue managers. The only class of service defined at this time is batch which is
indicated by a ‘.B’ suffixed to the channel name. The class of service will provide a mechanism
for separating message traffic by type and service level required.

Based on the above channel-naming convention, channel names can always be interpreted as
FromQueueManager.ToQueueManager without ambiguity.

Examples:
SAIGP1.QMP1
EAIBUSP1.CODP1.B

2.2 MQSeries Application Messaging Interface (AMI) Naming Guidelines

FSA has standardized on the use of Application Messaging Interface (AMI) as a programming API. The
AMI is a higher-level programming interface and abstracts many of the messaging specific details into
external repositories, removing them from the programmer’s responsibility. AMI is organized into three
major categories: Services, Policies, and Messages. That is: “Where”, “How”, and “What”.

The OAG OAMAS messaging standard has been implemented by IBM, resulting in the Application
Messaging Interface (AMI). AMI has three major components requiring naming standards to be applied.
AMI objects exposed to the applications are highly abstracted. Consequently AMI object naming will be
highly logical, exposing no implementation specific details. AMI objects are maintained in external
repositories. In the interest of maintaining the sanity of MQSeries administrators, a single AMI repository
will be used requiring objects to be qualified by the system that uses them. This will ensure the capability to
provide different options to different applications requesting the same service.

2.2.1 Service Points

Services are AMI objects that describe the “what” of the request. A service definition contains queue name,
queue manager and other details related to what queues are to be used for the request and reply.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 20

Service point names should be of the format:

Calling System.Application Details.Extension

- Calling system is the name of the system invoking AMI for this request

- Application details describe the function performed by the service

- Extension describes the action within the dialog and can be one of the following:

- REQSDR

Request Sender: This indicates that this service point is used to send requests for a given
service.

- REQRCVR

Request Receiver: This indicates that this service point is used to receive requests for a given
service

- REPRCVR

Reply Receiver: This indicates that this service point is used to receive replies to request for a
given service.

Examples of service point names are:
COD.GETMAIL.REQSDR
This is the service that would be used by COD to request mail from a SAIG mailbox.

SAIG.GETMAIL.REQRCVR
This is the service that would be used by SAIG to receive requests for mailbox data.

SAIG.COD.GETMAIL.REQRCVR
This is the service that would be used by SAIG to receive requests for mailbox data from COD.

2.2.2 Policies

Policies are objects that contain “how” the request to AMI is to be executed. Policy objects contain clauses
for connection requests, send and receive requests, as well as publish, subscribe, and policy handler details.
It should be possible to create only one policy per application named per that application. If further
granularity is required, this will be revisited and this section revised.

Examples of policy names are:

COD

This is the policy used by COD for all calls to AMI.

SAIG

This is the policy used by SAIG for all calls to AMI.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 21

2.3 Using a MQSeries Object

This section documents when to use each one of the MQSeries objects covered in section 2.1.

2.3.1 Channels

In order for two machines to communicate via MQSeries, a channel must exist. If two systems must
exchange messages, then two channels are required. Channels are created by system administrators or
dynamically by the MQSeries queue manager. Although used by the MQSeries queue manager to move
messages from one system to another, channels are of little interest to the application developer.

2.3.2 Queues

MQSeries system queues are simple FIFO disk-resident buffers that hold messages. Queues can be divided
into local queues and remote queues. Local queues reside on the local system and remote queues reside on
a remote system. If messages are destined for a remote system, then a remote queue should be used.
Messages destined for applications on the local system are sometimes referred to as destination queues,
application queues, or as local queues. Local queues are usually looked upon as queues from which
applications GET messages. Queues should be created based on application needs and used when
messages need to move between systems or between applications on the same system. Local queues were
used on each FSA legacy system.

Another type of queue is a transmission queue. Messages destined for remote queue managers are placed
in special queues called transmission queues. Messages reside in the transmission queue until they can be
delivered to the remote system via the sender channel. From the perspective of the local system,
transmission queues hold outbound messages. Again, transmission queues are created by the system
administrator and could be considered background objects. Transmission queues are used when messages
are PUT to a remote queue; the application developer does not write them to directly. At least one
transmission queue must be defined for each remote queue manager to whom the local queue manager is to
send messages directly. Transmission queues were used on each FSA legacy system.

Remote queues and alias queues are alternative logical names, which can be used to address an MQSeries
system queue instead of using the actual queue name. In the case of the remote queue definition, a single
name is provided for use by an application that relieves the application of needing to know the location
(queue manager name) of the destination queue. Remote queues are used when sending messages to a
destination queue defined on a remote queue manager. Both remote queues and alias queues are used by
the application developer to get and put messages. Remote queues were used on each FSA legacy system.

Alias queues provide a simple one-to-one name substitution capability. An alias associates an alternative
(alias) name with an already defined queue. By defining an alias, the MQSeries system administrator has
the ability to redirect message traffic. By using alias queue definitions, the programmer is insulated from
changing their application code to fit the changing needs of the network. An alias queue is not a queue, but
an object that one can use to access another queue.

Initiation queues are queues that are used in triggering. A queue manager puts a trigger message on an
initiation queue when a trigger event occurs. A trigger event is a logical combination of conditions that is
detected by a queue manager. Initiation queues are defined by the system administrator for the use of

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 22

triggering. Initiation queues are not used for the get and put of messages by the application developer.
They are used by the queue manager. Initiation queues were defined and used on each FSA legacy system.

A dead letter queue is a queue that stores messages that cannot be routed to their correct destinations.
There should only be one dead letter queue defined on each queue manager. The dead letter queue is
defined by the system administrator at the time the queue manager is created. Applications can also use the
queue for messages they cannot deliver. Dead letter queues were created on each FSA legacy system.

A model queue defines a set of queue attributes that are used as a template for creating a dynamic queue.
Dynamic queues are created by the queue manager when an application issues a MQOPEN request
specifying a queue name that is the name of a model queue. The dynamic queue that is created in this way
is a local queue whose attributes are taken from the model queue definition. Dynamic queues do not
survive product restarts; use dynamic queues with caution. Model and dynamic queues are used based on
application needs. These were not used for FSA

Processes allow an application to be started without the need for operator intervention. An application
queue can have a process definition object associated with it that holds details of the application that will
get messages from the application queue. Processes are usually associated with a trigger event: when the
trigger event conditions are met, the application associated with the process is initiated. For FSA,
processes were used to start the adapters.

2.4 MQSeries Messaging Implementation Guidelines

The following is a list of suggestions for MQSeries design and administration:

• The MQSeries Administrator is responsible for defining and maintaining MQSeries objects such as
queues, queue managers, channels, and processes.

• The configuration values of MQSeries objects should be selected carefully to satisfy the
requirements of each application. The default value is usually the recommended value. It should
not be changed without careful evaluation.

• Include a Dead Letter Queue for every implementation.

• Avoid trigger types “DEPTH” and “EVERY”. These triggering methods have the potential to
overload the system.

• Long running units of work are detrimental to the performance of the network. Break the work
into small pieces; this tends to have the additional benefit of improved restart capability.

• Use verified network port addresses. Every queue manager needs a listener port in order to
negotiate communications and manage the various queues. The default port address is 1414.
Check with the network engineers to avoid any port address conflicts during implementation.

• Always evaluate using clusters of queues for redundancy and load balancing.
Clusters provide a means to distribute the work in a queue among multiple processes. These
processes may be on the same or different physical machines, and the machines may be located in
the same or different locations. The only restriction on the locations of the members is that the
members must be able to communicate via TCP/IP. Communications between the queue managers

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 23

participating in each cluster enable the sending queue manager to route the message to the
appropriate queue manager based on the default load balancing method or user defined cluster
workload exit routine.

2.5 MQSeries Cluster Design Guidelines

2.5.1 Selecting Queue Managers to Hold Repositories
In each cluster, select at least one, preferably two, or possibly more of the queue managers to hold
repositories. A cluster could work quite adequately with only one repository but using two improves
availability. The repository queue managers are interconnected by defining cluster-sender channels
between them. A repository is a collection of information about queue managers that are members of a
cluster. This information includes queue manager names, their locations, their channels, what queues they
host, and so on. Typically, two queue managers in a cluster hold a full repository. The other queue
managers in a cluster inquire on the information in the full repositories and build up their own subsets of
this information in partial repositories.

The cluster is configured to include the Websphere Application Server and the two Sun Solaris Servers.
The Sun Servers were selected to be the repositories for the cluster.

• The most important consideration is that the queue managers chosen to hold repositories need to be
reliable and well managed.

• Consider the location of the queue managers and choose ones that are in a central position
geographically or perhaps ones that are located on the same system as a number of other queue
managers in the cluster.

• Another consideration might be whether a queue manager already holds the repositories for other
clusters. If a queue manager were a repository for one cluster, it would be wise to use the same
queue manager as a repository for other clusters of which it is a member.

When a queue manager sends out some information about itself, or requests some information about
another queue manager, the information or request is sent to two or more repositories. A repository
handles the request whenever possible but if the chosen repository is not available another repository is
used. When the first repository becomes available again, it collects the latest new and changed information
from the others so that the queue managers are kept in synch. The repository queue managers send
messages to each other to be sure that they are both kept up to date with new information about the cluster.
The automatic updating of repositories by queue managers is part of the behavior that is inherent to
clusters and is done behind the scenes without any intervention by the user.

The following cluster-sender and cluster-receiver definitions were taken directly from the IBM MQSeries
Queue Manager Clusters Manual:

“A cluster-sender (CLUSSDR) channel definition defines the sending end of a channel on which a cluster
queue manager can send cluster information to one of the full repositories. The cluster-sender channel is
used to notify the repository of any changes to the queue manager’s status, for example the addition or

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 24

removal of a queue. It is also used to transmit messages. The repository queue managers themselves have
cluster-sender channels that point to each other. They use them to communicate cluster status changes to
each other.“

“A cluster-receiver channel (CLUSRCVR) channel definition defines the receiving end of a channel on
which a cluster queue manager can receive messages from other queue managers in a cluster. A cluster-
receiver channel can also carry information about the cluster-information destined for the repository. The
definition of a cluster-receiver channel has the effect of advertising that a queue manger is available to
receive messages. You need at least one cluster-receiver channel for each cluster queue manager.”

If all the repository queue managers go out of service at the same time, queue managers continue to work
using the information contained in their partial repositories. New information and requests for updates
cannot be processed. When the repository queue managers reconnect to the network, messages are
exchanged to bring all repositories (both full and partial) back up to date.

2.5.2 Organizing a cluster
Having selected some queue managers to hold repositories, decide which queue managers should link to
which repository. The CLUSSDR channel definition links a queue manager to a repository from which it
finds out about the other repositories in the cluster. From then on, the queue manager sends messages to
any two or more repositories, but it always tries to use the one to which it has a CLUSSDR channel
definition first. It is not significant which repository is chosen.

It is not advisable to use a repository queue manager on an OS/390 system as the repository queue manager
because MQSeries for OS/390 does not have a command server. To ensure that a particular repository
queue manager is not used by the MQSeries Explorer, include the string ‘%NOREPOS%’ in the
description field of its cluster-receiver channel definition. When the explorer is choosing which repository
to link to, it ignores those channel description containing ‘%NOREPOS%’, and treats them as though the
queue manager did not hold a repository for the cluster. If there are a large number of repositories or they
are spread over a large area, it would be advisable to make a second CLUSSDR channel definition.

Choosing names
When setting up a new cluster, consider a naming convention for the queue managers. Every queue
manager must have a different name, but it may help to remember which queue managers are grouped
where if given a set of similar names. The queue naming convention of a cluster queue manager follows
the same naming convention of any other queue manager. Please refer to section 2.1.2 for queue manager
naming conventions. It is recommended that the cluster name be descriptive of the function the cluster is
performing. The cluster name is limited in length to 48 characters. For example, the name given to the
MQSeries cluster for FSA was “EAI”.

• Every cluster-receiver channel must have a unique name. One possibility is to use the queue-
manager name preceded by the preposition ‘TO’. The name would be of the form:

FIRSTNODE.SECONDNODE.

Where:

− FIRSTNODE is replace with the literal TO.
− SECONDNODE is replaced with the queue manager name.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 25

Example:
TO.SU35E16
TO.SU35E17

Remember that all cluster-sender channels have the same name as their corresponding cluster-
receiver channel.

• Do not use generic connection names on cluster-receiver definitions. If a CLUSRCVR is defined
with a generic CONNAME there is no guarantee that the CLUSSDR channels will point to the
queue managers intended. The initial CLUSSDR may end up pointing to any queue manager in the
queue-sharing group, not necessarily one that hosts a repository. Furthermore, if a channel goes to
retry status, it may reconnect to a different queue manager with the same generic name and the
flow of messages will be disrupted. Basically, the CONNAME should be the network address of
the machine the queue manager resides on.

2.5.3 Overlapping clusters
Create clusters that overlap. There are a number of reasons to do this, for example:

• To allow different organizations to have their own administration.
• To allow independent applications to be administered separately.
• To create classes of service.
• To create test and production environments.

In the figure above, the queue manager QM5 is a member of both the clusters illustrated.

If there is more than one cluster in the network, it is essential to give them different names. If two clusters
with the same name are ever merged, it will not be possible to separate them again.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 26

When defining a cluster, the following objects are included in the set of default objects defined when
creating a queue manager on V5.X of Sun Solaris and Windows NT, and in the customization samples for
MQSeries for OS/390.

• SYSTEM.CLUSTER.REPOSITORY QUEUE
• SYSTEM.CLUSTER.COMMAND.QUEUE
• SYSTEM.CLUSTER.TRANSMIT.QUEUE
• SYSTEM.DEF.CLUSSDR
• SYSTEM.DEF.CLUSRCVR

Do not alter the default queue definitions. This could alter the default channel definitions in the same way
as any other channel definition, using MQSC or PCF commands.

2.5.4 In the Unlikely Event of a Repository Failure
Cluster information is carried to repositories (whether full or partial) on a local queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. If this queue should fill up, perhaps because the queue
manager has stopped working, the cluster-information messages are routed to the dead-letter queue. If this
is observed from the messages on the queue-manager log or OS/390 system console, an application will
need to be executed to retrieve the messages from the dead-letter queue and reroute them to the correct
destination.

If errors occur on a repository queue manager, messages will appear defining what error has occurred and
how long the queue manager will wait before trying to restart. On MQSeries for OS/390 the
SYSTEM.CLUSTER.COMMAND.QUEUE is get-disabled. After identifying and resolving the error, get-
enable the SYSTEM.CLUSTER.COMMAND.QUEUE so that the queue manager will be able to restart
successfully.

In the unlikely event of a queue manager’s repository running out of storage, storage allocation errors will
appear on the queue-manager log or OS/390 system console. If this happens, stop and then restart the
queue manager. When the queue manager is restarted, more storage is automatically allocated to hold all
the repository information.

2.5.5 Cluster channels
Although using clusters relieves the need to define channels (because MQSeries defines them by default),
the same channel technology used in distributed queuing is used for communication between queue
managers in a cluster. To understand about cluster channels, become familiar with matters such as:

• How channels operate
• How to find their status
• How to use channel exits

These topics are all discussed in the MQSeries Intercommunication book.

When defining cluster-sender channels and cluster-receiver channels, do not set the “disconnect interval”
too low (less than about 10 seconds). If it is set too low, the channel may close down between sending a
request to a repository queue manager and receiving the response.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 27

If the cluster-sender end of a channel fails and subsequently tries to restart, the restart is rejected if the
cluster-receiver end of the channel has remained active. To avoid this problem, arrange for the cluster-
receiver channel to be terminated and restarted, when a cluster-sender channel attempts to restart.

On V5.X of MQSeries for Sun Solaris and Windows NT
Control this using the AdoptNewMCA, AdoptNewMCATimeout, and AdoptNewMCACheck attributes in
the qm.ini file or the Windows NT Registry. See the MQSeries System Administration book for more
information.

On MQSeries for OS/390
Control this using the ADOPTMCA and ADOPTCHK parameters of CSQ6CHIP. See the MQSeries for
OS/390 System Setup Guide for more information.

All documentation referenced above can be found in appendix A

2.6 MQSeries Cluster Implementation Guidelines

• On OS/390 clustering cannot be used if the system is using CICS for distributed queuing. In order
to get the most benefit out of using clusters, the queue managers in the network need to be on a
platform that supports clusters. Until all the systems are migrated to a platform that supports
clusters, the system may have queue managers outside a cluster that are not able to access the
cluster queues without extra manual definitions. The clustering facility is available to queue
managers on the following platforms:

MQSeries for AIX V5.1
MQSeries for AS/400 V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

• If two clusters with the same name were merged, it would not be possible to separate them again.
Therefore, it is advisable to give all clusters a unique name.

• If a message arrives at a queue manager but there is no queue there to receive it, the message is put
to the dead-letter queue as usual. (If there is no dead-letter queue, the channel fails and retries, as
described in “Dead-letter queue Guidelines” in the MQSeries Intercommunication book.)

• Using clusters reduces system administration. Clusters make it easy to connect larger networks
with many more queue managers than would be possible to contemplate using distributed queuing.
However, as with distributed queuing, there is a risk that the system may consume excessive
network resources if attempting to enable communication between every queue manager in a
cluster.

• The purpose of distribution lists, which are supported on V5.1 of MQSeries for Sun Solaris and
Windows NT, is to use a single MQPUT command to send the same message to multiple
destinations. Distribution lists can be used in conjunction with queue manager clusters. However,
in a clustering environment all the messages are expanded at MQPUT time and so the advantage,

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 28

in terms of network traffic, is not so great as in a non-clustering environment. The advantage of
distribution lists, from the administrator’s point of view, is that the numerous channels and
transmission queues do not need to be defined manually.

• If using clusters to achieve workload balancing, first examine the applications to see whether the
applications require messages to be processed by a particular queue manager or in a particular
sequence. Such applications are said to have message affinities. Applications may need to be
modified before being used in complex clusters.

• It is not advisable to use clustering in an environment where IP addresses change on an
unpredictable basis such as on machines where Dynamic Host Configuration Protocol (DHCP) is
being used.

2.7 FSA Cluster Specifics

2.7.1 Physical layout of the cluster
The hardware architecture implemented at FSA is shown in the diagram below.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 29

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Development/Test)

EAI BUS Server Cluster

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG

SU35E16

QMgrA

Websphere Application Server

 Oracle

Web Server

Adapter

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

Applications

Config-
uration

Mgr

MQSI Development NT Server

D
ep

lo
ym

en
t

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

SU35E17

QMgrA

MQSI
Broker 1

DB2

This diagram is an operational model of the EAI Bus and trading partner systems. Referenced from left to
right this diagram shows 4 logical areas consisting of the WAS Server, EAI Bus Cluster, MQSI
Configuration area, and the trading partner systems. The WAS server can be used as a front end for
testing of interfaces with trading partner systems. In addition, two trading partner systems may interface
with each other via the Bus.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 30

2.7.1.1 Cluster configuration – Development/Test

The FSA EAI cluster consists of 2 Sun Solaris Servers named SU35E16 and SU35E17. The Sun Servers
are the repository queue managers for the cluster.

The steps used in creating the cluster are:

1. Install MQSeries on the system.

2. Create the queue managers and the default objects with the crtmqm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SYSTEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when it
is needed.

4. Decide upon the cluster name, in the case of FSA the name of EAI was chosen for the cluster.

5. Determine which queue managers should hold full repositories. For FSA, both nodes SU35E16

and SU35E17 were chosen to hold full repositories.

6. Alter the queue manager definitions to add repository definitions. The command ALTER QMGR
REPOS(EAI) was executed on both SU35E16(Development) and SU35E17(Test).

7. Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a

cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E5, SU35E16(Development), and SU35E17(Test) with the command:

For example:
On SU35E5: DEFINE CHANNEL(TO.SU35E5) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E5) CLUSTER(EAI)
On SU35E16 Development: DEFINE CHANNEL(TO.SU35E16(Development))
CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(ip address of SU35E16(Development))
CLUSTER(EAI)
On SU35E17 Test: DEFINE CHANNEL(TO.SU35E17(Test)) CHLTYPE(CLUSRCVR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER(EAI)

8. Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one

cluster-sender channel on which the queue manager can send messages to one of the repository
queue managers.

On SU35E5: DEFINE CHANNEL(TO.SU35E16(Development)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E16) CLUSTER (EAI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 31

On SU35E16 Development: DEFINE CHANNEL(TO.SU35E17(Test)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER (EAI)
On SU35E17 Test: DEFINE CHANNEL(TO.SU35E16(Development)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP)
CONNAME(ip address of SU35E16(Development)) CLUSTER(EAI)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender channel
in the same cluster, the cluster-sender channel is started.

9. Define any cluster queues. For example:

On SU35E16 Development: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EAI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 32

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Production)

EAI BUS Servers Clusters

MQSeries Server

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG

QMgrB

MQSeries Server

QMgrA

Websphere Application Server

Websphere Application Server

 Oracle

Web Server

Web Server

Adapter

Adapter

MQSI
Broker 2

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrW

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

DB2

D
ep

lo
ym

en
t

MQSI Production Migration NT Server

Config-
uration

Mgr

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

Applications

2.7.1.2 Cluster configuration – Production

The FSA EAI cluster “EAIPROD” consists of 2 Sun Solaris machines named SU35E3 and SU35E14.
These two machines are the repository queue managers for the cluster.

The steps used in creating the cluster are:

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 33

1. Install MQSeries on the system.

2. Create the queue managers and the default objects with the crtmqm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-

defined initiation queue SYSTEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when it
is needed.

4. Decide upon the cluster name, in the case of FSA the name of EAIPROD was chosen for the

cluster.

5. Determine which queue managers should hold full repositories. For FSA, both nodes SU35E3 and
SU35E14 were chosen to hold full repositories.

6. Alter the queue manager definitions to add repository definitions. The command ALTER QMGR

REPOS(EAIPROD) was executed on both SU35E3 and SU35E14.

7. Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a
cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E3, SU35E9, SU35E13, and SU35E14 with the command:

For example:
On SU35E3: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E3) CLUSTER(EAIPROD)
On SU35E9: DEFINE CHANNEL(TO.SU35E9) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E9) CLUSTER(EAIPROD)
On SU35E13: DEFINE CHANNEL(TO.SU35E13) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E13) CLUSTER(EAIPROD)
On SU35E14: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER(EAIPROD)

8. Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one

cluster-sender channel on which the queue manager can send messages to one of the repository
queue managers.

On SU35E3: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E9: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E13: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E14: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E3) CLUSTER (EAIPROD)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 34

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender channel
in the same cluster, the cluster-sender channel is started.

9. Define any cluster queues. For example:

On SU35E3: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EAIPROD)

2.8 MQSeries Security Standards

In general, security can be addressed at many different levels in a messaging environment. These security
levels are identified as the application, middleware, operating system, network, and link levels. Another
way to look at security is to think about providing access control, confidentiality, authentication, non-
repudiation and integrity functionality.

EAI is committed to protecting the EAI framework from illegal or damaging actions by individuals, either
knowingly or unknowingly. The EAI framework is to be used for business purposes in serving the interests
of Federal Student Aid, its clients and customers in the course of normal operations. Effective security is a
team effort involving the participation and support of every Federal Student Aid employee and affiliate who
deals with information and/or information systems.

EAI complies with FSA/CSC policies and procedures. This consists of file-level security and use of a
restricted number of non-published tcp/ip ports. Only users who belong to the mqm group can execute EAI
Services. There is only one communication port used by each system for EAI communication purposes.

Therefore:

1) All EAI binaries will be run behind the DMZ. It means that no messages will be transmitted in
clear text across a public (CSC, TSYS, ACS). This reduces the security exposure of the EAI to the
outside world is not bigger than the likelihood of hacker accessing other FSA resources. Note: See
Data Encryption policy for exception(s).

2) Use of EAI is restricted to only the users who belong to the mqm group. It serves 2 purposes. First
of all it requires explicit action on behalf of every EAI user to be added to the mqm group. Second,
malicious users will not be able to get access to EAI. EAI users who failed to go through the step
of being added to mqm group as well as malicious users trying to communicate with the “EAI
BUS” will be returned a MQSeries 2035 error reason code, which means “Not authorized”.

3) On each production system there is only one tcp/ip port open to allow incoming communication.

2.8.1.1 Data Encryption Policy (internal to FSA)

The data encryption policy defines requirements for encryption algorithms used within the organization.

EAI data that resides on hardware managed by FSA (CSC) will not be encrypted. This policy is subject to
change depending upon application requirements

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 35

2.8.1.2 Data Encryption Policy (external to FSA)

The data encryption policy defines requirements for encryption algorithms used with external trading
partners. Hardware level encryption is used when exchanging data between FSA managed servers and
external trading partner servers; i.e. servers not hosted by the CSC.

Application level encryption will also be considered depending on future requirements.

2.9 EAI MQSeries Security Implementation Guidelines

Queue Managers need to ensure that they exchange messages with the correct partner Queue Managers.
Note that it is just as important for the sending Queue Manager to be sure of the receiver’s identity as it is
for the receiving Queue Manager to be sure of the sender’s identify. Such an environment is called mutual
authentication. EAI will develop, test, and implement MQSeries channel exits for mid-tier servers to
authenticate connectivity from authorized servers. Only servers in the authorized list will be permitted to
connect/utilize EAI resources.

2.9.1 EAI Application Consideration

The following table is a guideline of security services that can be provided depending upon application
requirements, the category of requirement (NR – not required, O – optional, M –mandatory, V-Varies by
application) and which levels might be used to satisfy each service (AL-Application Level, OS-Operating
System Level, MW-Middleware Level, LL- Link Level, NW- Network Level, PP-Policy and Procedures).

Service

Category
Applicable Approaches

v Identification & Authentication (I & A)

Ø End User
M

OS, AL

Ø Application Processes M OS

Ø Channel Agent V OS, MW

v Authorization (Access Control)

Ø Application Processes

§ Queues O OS, MW

§ Message Headers V OS, MW

Ø System Processes

§ Queues O OS, MW

§ Message Headers V MW

Ø Restricted Commands M OS, MW, AL

Ø Resource Definitions M OS, MW, AL

v Message Integrity
Ø Modification Detection O

LL, NW, MW, AL

v Message Non-Repudiation

Ø Sender O NW, MW, AL

Ø Receiver O NW, MW, AL

v Message Privacy

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 36

Service
Category

Applicable Approaches

Ø Entire Message
O

LL, NW, MW, AL

Ø Selected Fields
O

MW, AL

v Logging

Ø Changes to security information
M

OS, MW, AL

Ø Security-related events

§ Failed access attempts M NW, OS, MW, AL

§ Failed message content validation O NW, MW, OS, AL

2.10 MQSeries Websphere Design Guidelines

The Web Application Server communicates with the EAI bus to retrieve and put information to different
legacy data sources. WebSphere Application Server is the standard Java Application Server in the
Integrated Technical Architecture (ITA) at FSA. The WebSphere Server will host Web Based applications
that act as middleware between the client browser and FSA’s Legacy Systems via the EAI bus. Using Java
Server Pages, Servlets and Enterprise Java Beans, WebSphere implements FSA’s business application
logic through Java based Applications. Several methods exist to enable communication between a
WebSphere hosted application and the EAI bus.

2.10.1 WebSphere Connectors
WebSphere Common Connector Framework Classes - IBM java classes provided with WebSphere
Application Server which provide a highly abstract view of multiple middleware products.

Application Messaging Interface Java Classes - IBM provided java classes which implement the Open
Applications Group Open Applications Messaging Standard (OAG OAMAS). These classes provide a
"services" view of middleware, shielding developers from the underlying messaging semantics.

IBM Java class for MQSeries - IBM provided java classes which provide a thin java native interface (JNI)
wrapper around the MQSeries native libraries. These classes are provided with the base MQSeries
product.

IBM Java Messaging Service classes - IBM provided java classes which provide an implementation of the
Sun Java Messaging Service specification. These classes allow applications to be developed using a vendor
neutral interface which would allow for the messaging layer to be replaced or the programs moved to other
platforms where other JMS services could be used interchangeably.

EAI Messaging components - EAI developed java components to provide an RPC-like interface to FSA
middleware. Two implementations of these components exist, one using AMI and one using the base
MQSeries java classes.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 37

2.10.1.1 Common Connector Framework

The Common Connector Framework is a standard for developing applications using E-Business Patterns.
When a Web Application Server needs to access a Backend Enterprise Information System, whether it is a
middleware messaging system, Enterprise Database system, or a System 390 Transaction Management
System, several common communication procedures must take place. These procedures may include
starting a transaction, processing data, passing status, and closing the transaction. Whether the backend
system is CICS, IMS, DB2 or an Oracle RDBMS, the actual commands and parameters may be different
but the high level procedures are common. Since these procedures and backend systems have already been
identified, prebuilt java classes can be written to communicate with these systems. This requires a change
to the parameters and data that is passed to the backend systems.

The Common Connector Framework (CCF) is actually implemented within IBM’s java development tool,
Visual Age for Java (VAJ). The needed classes that implement the binding between the Web Application
Server and MQSeries are included within VAJ’s Enterprise Access Builder, which is part of VAJ
Enterprise Edition. Programs written using the MQSeries CCF connector classes can communicate with
MQSeries Applications using the standard MQSeries Programming Interface or the MQSeries Client
classes for java interface. A programmer can use the SmartGuide Wizard within VAJ to build a program
shell that will communicate with MQSeries and all that is required is to add the application business logic
that will make decisions.

2.10.1.2 Build Your Own Connector

Using MQSeries client classes for Java, a programmer can develop their own interface to MQSeries. This
option should only be used by very experienced programmers that have previously implemented Java
interfaces to messaging systems. This option is not recommended because the CCF framework is so readily
available.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 38

2.10.2 Architecture look and feel

Whether using the CCF framework or building a custom connector, it is important to have a standard,
reusable application component within the Java Application Server that enforces communication and data
transfer standards between the Application Server and EAI Bus. This reusable component can exist as a
Servlet or an Enterprise Java Bean on the WebSphere Application Server. When other applications require
access to the EAI Bus, the applications would make a call to the servlet/EJB, which then forwards the
message to the EAI bus. This reusable servlet/EJB enforces naming standards, queue names and cluster
names before sending message data to the EAI bus. This servlet/EJB would also control the number of
connections to MQSeries and allow a central place to tune and manage the web application interface to
MQSeries.

To provide reliability and availability of the EAI Bus, the MQSeries Server component should be installed
on all WebSphere Application Server (WAS). If an active MQSeries Server with defined Queue Managers
are installed on the WAS Server, this ensures assured delivery of all messages to the target destination. If
the Queue Manager on the target destination server goes down the sending MQSeries Server will retain the
message data and send once connectivity to the target Queue Manager is restored.

EAI BUS

Java Application
Running within

WebSphere

EAI Servlet/EJB
running with
WebSphere

Providing access to
EAI Bus

MQSeries Server
Residing on
WAS Server

Java Application needs access to the
EAI Bus and makes a call to the EAI
Message Servlet, passing the message

To Ensure Reliabilty MQSeries
Server is installed on WAS Box

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 39

2.10.3 FSA EAI WebSphere Reusable Component

The EAI Core Architecture team has developed a reusable WebSphere Java component as an aid to FSA
application developers in connecting Internet applications to the EAI Bus. This reusable component is
written in Java. It provides a class file for putting and getting messages into and out of a MQSeries
message queue. The application incorporates this Java class within the application code to provide a
transparent mechanism for putting messages into a queue to be sent to the EAI Bus for processing, and to
retrieve message data from a queue upon return. The application specific logic must be built into the
application to pass the required message data and to process the message data upon receipt.

2.10.3.1 WebSphere MQ Adapter Overview

The WebSphere MQ Adapter is a Java component that provides a Class file to put message data into a
MQSeries message queue and to get message data from a MQSeries message queue. The adapter utilizes
MQSeries MQI calls to perform this functionality. In addition, the MQ Adapter provides XML translation
capability. This transforms the input message from the WebSphere server application into the application
specific XML format. The input data can be of any format, as long as the XML mapping is defined in the
application specific MQ Adapter. The message can be passed to the EAI Bus for transformation by MQSI.
This functionality was provided for the PEPS and bTrade validation test.

The developed EAI MQ Adapter resides in the ClearCase repository. Any FSA application development
team can utilize this functionality for putting messages into a MQSeries message queue, transforming into
XML format, and getting the returned message data from the legacy system for processing by the
application.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 40

3 DATA INTEGRATOR ARCHITECTURE CONVENTIONS AND GUIDELINES

Data Integrator (DI) is a COTS product that uses MQ messaging to transfer data between different
systems. When sending a file, DI automatically splits it up into MQ messages, sends it across a channel(s),
and reassembles it at the destination machine. FSA has not previously utilized Data Integrator as part of its
existing middleware infrastructure therefore no standards currently exist. This section will provide
guidance on Data Integrator standards that have been developed in the FSA EAI architecture.

3.1 Data Integrator Standards

3.1.1 Bi-Directional Sending

Bi-directional sending means that messages can be sent in both directions between queue managers. Every
trading partner that uses Data Integrator is set up to send and receive messages in both directions, even in
cases where the ability to send in one direction is all that is required.

3.1.2 Pool Architecture

Pooled queues are used to support large file transfers. Local queues have size limitations of 1 GB, so
pooling 50 local queues allows each trading partner to receive files up to 50 GB in size. All interfaces on
the Bus use 50 pooled queues, and the default data pool used for sending via the EAI Bus is EAIPOOL.

3.1.3 Scripts

Unix scripts that send data between interfaces using Data Integrator are generally named in the following
format: <Destination Name>interface.sh (ex. A script on FMS called PEPSinterface.sh would send data
from FMS to PEPS).

All scripts for Data Integrator reside in the $EAIDIR/ftf directory

3.1.4 Configuration file

The configuration file contains default settings for Data Integrator, including defaults for its components
(discussed later), logging, and pooled queues. An example is the DefaultPool value of ‘EAIPOOL’, as
mentioned above. There is one .ini configuration file (ftfconfig.ini) that is used across all trading partners.
The .ini files used for all trading partners have the same options specified.

3.2 Data Integrator Implementation

The following is a list of suggestions for the design and administration of Data Integrator.

• Unix environment variables (i.e. $LQM) should be used whenever possible.

• Avoid the use of ‘dirmon’ (directory monitoring) whenever possible. The script that is supposed to
be “kicked off” should be called directly instead.

• When scripts are called via cron:

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 41

o Ensure that the owner of the cronjob has permission to execute the DI scripts.

o Ensure that ftfenvlist.sh has been sourced in from the EAI build.

• Trading partner data for the COD interface is written out to the $EAIDATA directory. If another
interface would prefer data written out to a different directory, ensure that the appropriate users
have read/write access to that directory.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 42

4 MQSERIES INTEGRATOR ARCHITECTURE CONVENTIONS AND GUIDELINES

MQSeries Integrator provides data transformation and message routing capability. This section will
provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI architecture. These
guidelines are meant to provide guidance in defining and implementing MQSeries Integrator objects.

4.1 MQSI Naming Standards

4.1.1 Common Rules

For FSA, there are rules that must be adhered to when providing names or identifiers for message flows,
message sets, messages, message processing nodes, brokers, and execution groups in the MQSI broker
domain:

• Use all upper case letters

• Version all message flows, message sets, and messages names.

• Underscore should be used instead of spaces when naming all message flows, message sets, and
messages.

• MRM object identifiers must match the object name. MRM objects include categories, element
qualifiers, elements, element lengths, messages, types and element valid values. The reason for this is that
the objects are referenced by their identifiers and not their names.

• A corresponding description should be provided for any objects created.

4.1.2 Brokers

The broker is a MQSI resource that hosts and controls business processes defined in message flows. The
following guidelines should be followed when naming brokers:

• The broker name must be unique within the MQSI domain.

• Associate each broker with a separate MQSeries Queue Manager. There is a one-to-one correlation
between a broker and a queue manager.

• The broker name should have the same name as the Queue Managers they are associated with.

• For example a Queue Manager called “MQSI” would have a broker “MQSI” associated with it.

4.1.3 Execution Groups

An execution group provides an isolated execution environment within the broker, and is started as a
separate operating system process. The following guidelines should be followed when naming execution
groups:

• The execution group must be unique within a broker.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 43

• Execution group names should be of the form:

FIRSTNODE_SECONDNODE

q The first node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easily within the broker based on the systems it
communicates with.

q The second node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easily within the broker based on the systems it
communicates with.

Examples:

COD_FMS

4.1.4 Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individual
actions along the message flow. The following guidelines should be followed when naming message flows:

• The name for a message flow must be unique within a broker domain.

• Message flow names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

q The first node is the name of the system that messages are coming from.

q The second node is the name of the system that messages are sent to.

q The third node is a short description of as to the function of the message flow.

q The fourth node is the current version of the message flow being used.

Examples:

FMS_COD_RESPONSE_1

EAI_COD_ERRORS_1

4.1.5 Message Sets

A message set is a logical grouping of related messages. The following guidelines should be followed when
naming message sets:

• The name for a message set must be unique within a broker domain.

• Message set names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node is the name of the system that messages are coming from or sent to.

q The second node is the name of the system that messages are coming from or sent to.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 44

q The third node is the current version of the message flow being used.

Examples:

COD_FMS_1

4.1.6 Messages

A message is the logical representation of data that is exchanged between client applications and MQSeries
Integrator. The following guidelines should be followed when naming messages:

• The name for a message must be unique within a message set.

• Message names should be in the following format:

FIRSTNODE_SECONDNODE_THRIDNODE_FORTHNODE

q The first node is the name of the system that owns that messages structure.

q The second node is a short description of as to the function of the message.

q The third node represents the how the message will be used. Valid values are “INPUT” and
“OUTPUT”. If the message will be used as both input and output, then this should be left blank.

q The fourth node is the current version of the message being used.

Examples:

COD_FINANCIAL_1

COD_VENDOR_INPUT_1

FMS_RESPONSE_INPUT_1

4.1.7 Message Flow Nodes

A message processing node is a point in the message that represents a well defined processing stage. It can
be one of several primitive types or can represent a sub flow. There is no hard and fast way that message
flow nodes should be named. However there are some guidelines that can be presented here in order to
make the message flow clearer for people trying to understand its business purpose.

4.1.7.1 Check

The Check node compares the format of a message with a message-type specification that you supply when
you configure the Check node. The message-type specification comprises any combination of the message
domain, message set, and message type. The following guidelines should be followed when naming Check
nodes:

• Check node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

q The first node must be CHECK

q The second node must be “DOMAIN”, “SET”, and/or “TYPE”.

q The third node is the short description for the function of the node.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 45

q The fourth node is optional and is the instance the Check node within the message flow.

Examples:

CHECK_DOMAIN_XML

4.1.7.2 Compute

The Compute node constructs a new message or modifies elements of an existing message, or its associated
destination or exception list, or both. These components of the message can be based on elements of both
the input message and data from an external database. The following guidelines should be followed when
naming Compute nodes:

• Compute node names should be in the following format:

FIRSTNODE.SECONDNODE.THIRDNODE.FOURTHNODE

q The first node is the name of the input message format that is sent to the node.

q The second node is the name of the output message format that is sent from the node.

q The third node is the short description of as to the function of the node.

q The fourth node is optional and is the instance the Compute node within the message flow.

Examples:

COD_VENDOR_INPUT_1.COD_FINANCIAL_1.TRANSFORMATION

COD_FINANCIAL_1.COD_FINANCIAL_1.DBLOOKUP.2

4.1.7.3 Database

The Database node allows a database operation in the form of an ESQL statement to be applied to the
specified ODBC data source. The following guidelines should be followed when naming Database nodes:

• Database node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

q The first node represents the how the database function that will be performed. Valid values are
“INSERT_INTO”, “UPDATE_IN”, and “DELETE_FROM”.

q The second node is the database name that the node connects to.

q The third node is the table name that the node references.

q The fourth node is optional and is the instance the Database node within the message flow.

Examples:

INSERT_INTO_DEV_COD_1

UPDATE_IN_DEV_COD_2

DELETE_FROM_COD_1

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 46

4.1.7.4 DataDelete

The DataDelete node is a specialized form of the Database node that allows deletion of one or more rows
from a table in the specified ODBC data source. The following guidelines should be followed when naming
DataDelete nodes:

• DataDelete node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

q The first node must be “DELETE_FROM”.

q The second node is the database name that the node connects to.

q The third node is the table name that the node references.

q The fourth node is optional and is the instance the DataDelete node within the message flow.

Examples:

DELETE_FROM_COD_1

4.1.7.5 DataInsert

The DataInsert node is a specialized form of the Database node that allows insertion of one or more rows
into a table in the specified ODBC data source. The following guidelines should be followed when naming
DataInsert nodes:

• DataInsert node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

q The first node must be “INSERT_INTO”.

q The second node is the database name that the node connects to.

q The third node is the table name that the node references.

q The fourth node is optional and is the instance the DataInsert node within the message flow.

Examples:

INSERT_INTO_DEV_COD_1

4.1.7.6 DataUpdate

The DataUpdate node is a specialized form of the Database node that allows the modification of one or
more rows in a table in specified ODBC data source. The following guidelines should be followed when
naming DataUpdate nodes:

• DataUpdate node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

q The first node must be “UPDATE_IN”.

q The second node is the database name that the node connects to.

q The third node is the table name that the node references.

q The fourth node is optional and is the instance the DataUpdate node within the message flow.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 47

Examples:

UPDATE_IN_DEV_COD_1

4.1.7.7 Extract

The Extract node derives an output message from those elements of the input message that you specify for
inclusion. The following guidelines should be followed when naming Extract nodes:

• Extract node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “EXTRACT”.

q The second node is the short description of as to the function of the node.

q The third node is optional and is the instance the Extract node within the message flow

Examples:

 EXTRACT_ HEADER

4.1.7.8 Filter

The Filter node routes a message according to message content using a filter expression specified in ESQL.
The following guidelines should be followed when naming Filter nodes:

• Filter node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node is a question title that represents the functionality of the node.

q The second node is optional and is the instance the Filter node within the message flow.

Examples:

IS_GL_TRANSACTION

IS_AP_TRANSACTION_1

4.1.7.9 FlowOrder

The FlowOrder node enables you to control the order in which a message is processed by a message flow.

• FlowOrder node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “ORDER”.

q The second node is the short description of as to the function of the node.

q The third node is optional and is the instance the FlowOrder node within the message flow.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 48

Examples:

 ORDER_ DB_INSERT

4.1.7.10 Input Terminal

The Input Terminal provides an in terminal for an embedded message flow. The following guidelines
should be followed when naming Input Terminal nodes:

• Input Terminal node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node is the message flow name.

q The second node must be “IN”.

Examples:

 COD_ERROR_IN

4.1.7.11 Label

The Label node is a named destination for a message processed by a RouteToLabel node. The Label node
is identified by an entry in a destination list of the message when it is processed by a RouteToLabel node.
The following guidelines should be followed when naming Label nodes:

• Label node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node is the function of the adjacent nodes that are associated with the Label node.

q The second node must be “LABEL”.

Examples:

DB_INSERT_LABEL

FMS_LABEL

DEFAULT_LABEL

4.1.7.12 MQInput

The MQInput node reads a message from an MQSeries message queue defined on the broker's queue
manager, and establishes the processing environment for the message. The following guidelines should be
followed when naming MQInput nodes:

• The name must be the same name as the underlying MQSeries queue that it references.

Examples:

EAI.COD.FINANCIAL.GET

EAI.FMS.FINANCIAL.RESPONSE.GET

EAI.COD.VENDOR.GET

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 49

4.1.7.13 MQOutput

The MQOutput node writes messages to an MQSeries message queue defined on any queue manager
accessible by the broker's queue manager, or to the destinations identified in the destination list associated
with the message. The following guidelines should be followed when naming MQOutput nodes:

• The name must be the same name as the underlying MQSeries queue that it references.

Examples:

FMS.COD.FINANCIAL.RESPONSE.PUT

COD.FMS.FINANCIAL.RESPONSE.PUT

COD.ERRORS.PUT

4.1.7.14 MQReply

The MQReply node is a specialized form of the MQOutput node that sends a response to the originator of
the message by putting a message to the MQSeries queue identified by the ReplyToQueue field of the
message header. The following guidelines should be followed when naming MQReply nodes:

• MQReply node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “REPLY_TO”.

q The second node is the name of the system that messages are sent to.

q The third node is optional and is the instance the MQReply node within the message flow.

Examples:

REPLY_TO_COD

REPLY_TO_FMS_1

4.1.7.15 NeonFormatter

The NEONFormatter node is used to transform a message from a known input format to a specified output
format. The message definition and transformations are defined using the NEON Formatter graphical
utility. The following guidelines should be followed when naming NeonFormatter nodes:

• NeonFormatter node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “TRANSFORM_TO_NEON”.

q The second node is the output format that is defined in the NEON Formatter.

q The third node is optional and is the instance the NEONFormatter node within the message flow

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 50

Examples:

TRANSFORM_TO_NEON_FMS

TRANSFORM_TO_NEON_COD_1

4.1.7.16 NeonRules

The NEONRules node provides an encapsulation of the NEON Rules engine within the MQSeries
Integrator Version 2 environment. The following guidelines should be followed when naming NeonRules
nodes:

• NeonRules node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node must be “NEONRULES”.

q The second node is optional and is the instance the NeonRules node within the message flow.

Examples:

NEONRULES_1

4.1.7.17 Output Terminal

The Output Terminal provides an out terminal for an embedded message flow. The following guidelines
should be followed when naming Output Terminal nodes:

• Output Terminal node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node is the message flow name.

q The second node must be “OUT”.

Examples:

 COD_ERROR_OUT

4.1.7.18 Publication

The Publication node filters and transmits the output from a message flow to subscribers who have
registered an interest in a particular set of topics. The following guidelines should be followed when
naming Publication nodes:

• Publication node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “PUBLISH_TO”.

q The second node is optional and represents the subscription point.

q The third node is optional and is the instance the Publication node within the message flow.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 51

Examples:

PUBLISH_TO_XML

PUBLISH_TO_FIXED_1

4.1.7.19 ResetContentDescriptor

The ResetContentDescriptor node takes the bit stream of the input message and reparses it using a different
message template from the same or a different message dictionary. The node can reset any combination of
message domain, set, type, and format. The following guidelines should be followed when naming
ResetContentDescriptor nodes:

• ResetContentDescriptor node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “RESET_TO”.

q The second node is the new message template that the message will follow.

q The third node is optional and is the instance the ResetContentDescriptor node within the message
flow.

Examples:

 RESET_TO_XML

 RESET_TO_NEON_1

4.1.7.20 RouteToLabel

The RouteToLabel node provides a routing facility based on the contents of the destination list associated
with the message. The destination list contains the identity of one or more target Label nodes. The
following guidelines should be followed when naming RouteToLabel nodes:

• RouteToLabel node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node must be “ROUTETOLABEL”.

q The second node is optional and is the instance the RouteToLabel node within the message flow.

Examples:

ROUTETOLABEL_1

4.1.7.21 Throw

The Throw node provides a mechanism for throwing an exception within a message flow. The following
guidelines should be followed when naming Throw nodes:

• Throw node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “THROW”.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 52

q The second node is a short description of the exception that is thrown.

q The third node is optional and is the instance the Throw node within the message flow.

Examples:

THROW_INVALID_TRANSACTION_TYPE

THROW_COD_ERROR_1

4.1.7.22 Trace

The Trace node generates trace records that can incorporate text, message content, and date and time
information, to help you to monitor the behavior of the message flow. The following guidelines should be
followed when naming Trace nodes:

• Trace node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

q The first node must be “TRACE”.

q The second node is a short description of the function of the trace node.

q The third node is optional and is the instance the Trace node within the message flow.

Examples:

TRACE_MESSAGE

TRACE_MESSAGE_HEADERS_1

4.1.7.23 TryCatch

The TryCatch node provides a special handler for exception processing. The following guidelines should be
followed when naming TryCatch nodes:

• TryCatch node names should be in the following format:

FIRSTNODE_SECONDNODE

q The first node must be “TRYCATCH”.

q The second node is optional and is the instance the TryCatch node within the message flow.

Examples:

TRYCATCH

4.1.7.24 Warehouse

The Warehouse node is a specialized form of the Database node that stores the entire message, or parts of
the message, or both, to the specified ODBC data source. The following guidelines should be followed
when naming Warehouse nodes:

• Warehouse node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 53

q The first node must be “HOUSE_IN”.

q The second node is the database name that the node connects to.

q The third node is the table name that the node references.

Examples:

HOUSE_IN_DEV_COD

4.2 MQSI Implementation Guidelines

The following is a list of suggestions for designing message flows and message sets in MQSeries
Integrator.

• Develop message flows to be as concise as possible. There is a cost associated with passing through each
of the primitive nodes, so it is best to develop a flow in as few nodes as possible.

• Use RouteToLabel and Label nodes for message flows that routes messages in several (more than 3)
directions, since they are cheaper than several Filter nodes.

• Combine Filter and Compute nodes into a single Compute node with an IF THEN ELSE structure when
possible.

• Use non-persistent messages instead of persistent messages. Persistent messages cause a great deal more
logging and therefore the speed of the flow is bound by the speed of the disk hardware.

• Set Transaction Mode to automatic as a property of the MQInput node, to allow persistent messages to
be treated as transactions while non-persistent messages are not.

• Refrain from using nesting loops inside each other since they offer no significant gain because the extra
overhead of the additional ESQL counters the small gains from navigating more quickly through the
message structure.

• Minimize converting between message XML, MRM and BLOB formats.

• Reusable logic should be placed in sub-flow, so that other flows have access to it. Examples would
include a common error handling route.

• Message elements, element lengths and types should be automatically created by using the MQSI
importer. The MQSI importer allows for the importing of C structures and COBOL copybooks.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 54

5 FSA APPLICATION ENABLEMENT GUIDELINES

5.1 Application Programs and Messaging

The IBM MQSeries range of products provides application-programming services that enable application
programs to communicate with each other using messages and queues. This form of communication is
referred to as commercial messaging. It provides assured, once-only delivery of messages. Using MQSeries
means that you can separate application programs, so that the program sending a message can continue
processing without having to wait for a reply from the receiver. If the receiver, or the communication
channel to it, is temporarily unavailable, the message can be forwarded later. MQSeries also provides
mechanisms for providing acknowledgements of messages received.

The programs that comprise a MQSeries application can be running on different computers, on different
operating systems, and at different locations. The applications are written using a common programming
interface known as the Message Queue Interface (MQI), so that applications developed on one platform can
be transferred to another.

This figure shows that when two applications communicate using messages and queues, one application
puts a message on a queue, and the other application gets that message from the queue.

5.2 Application Usage Guidelines For MQSeries

A queue is a MQSeries object owned by a queue manager, upon which applications can put or retrieve
messages. Applications access a queue by using the Message Queue Interface (MQI). Before a message
can be put on a queue, the queue must already exist. Each queue must have a name that is unique to the
owning queue manager. Before an application can use a queue, it must open the queue, specifying what it
wants to do with it. For example, the application can open a queue to:

• Browse messages only (do not delete them)
• Retrieve messages

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 55

• Put messages on the queue
• Inquire about the attributes of the queue
• Set the attributes of the queue

For a complete list of the options related to opening a queue, see the description of the MQOPEN call in the
MQSeries Application Programming Reference manual.

There are different types of queues. These types include:

• Local: a local queue is managed by the queue manager to which the application is connected
• Remote: a remote queue is managed by a queue manager other than the one to which the

application is connected
• Alias: an alias queue points to another queue
• Model: a model queue is a template for queue definition
• Dynamic: a dynamic queue is a temporary queue defined based on a model queue

In FSA’s technical environment, the use of alias queues is discouraged, unless a business need dictates its
use (e.g. limiting security access to certain queues). Applications putting messages to remote queues will
use the remote queue definition. This allows the application to only specify the remote queue name and not
be required to know the remote queue manager name. Model and dynamic queues should be used only
when a business need dictates their use.

5.2.1 Identifying an Application for a Queue Manager

Any MQSeries application must make a successful connection to a queue manager before it can make any
other MQI calls. When the application successfully makes the connection, the queue manager returns a
connection handle. This is an identifier that the application must specify each time it issues a MQI call. An
application can connect to only one queue manager at a time* (known as its local queue manager), so only
one connection handle is valid (for that particular application) at a time. When the application has
connected to a queue manager, that queue manager processes all the MQI calls that the application issues
until the application issues another MQI call to disconnect from that queue manager. Each adapter written
for FSA performs the task of connecting to the queue manager.

* When an application connects to a queue manager, it issues a MQCONN call. The scope of a
MQCONN call is limited to the thread that issued it within all of the following:

− MQSeries for AS/400

− MQSeries for Compaq (Digital) OpenVMS

− MQSeries for OS/2 Warp

− MQSeries on UNIX systems

− MQSeries for Windows

− MQSeries for Windows NT

That is, the connection handle returned from a MQCONN call is valid only within the thread that issued the
call. Only one call may be made at any one time using the handle. If it is used from a different thread, it
will be rejected as invalid. If the application has multiple threads and each wishes to use MQSeries calls,
each one must individually issue MQCONN. Each thread can connect to a different queue manager on
OS/2 and Windows NT, but not on OS/400 or UNIX. If the application is running as a client, it may

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 56

connect to more than one queue manager within a thread. This does not apply if the application is not
running as a client.

5.2.2 Opening and Closing Queues

Before opening a queue using the MQOPEN call, the application must connect to a queue manager. The
application can then use the MQOPEN call to open a queue. The application can also then use the
MQCLOSE call to close a queue. When an application opens a queue, the application receives an object
handle for that queue. This handle is used in subsequent calls to get or put messages. The same queue can
be opened more than once; each open call creates a new object handle. However, most applications will
only need to open a given queue once.

Once an application has opened a queue, the application has access to that queue until it closes the queue.
The MQOPEN call is costly in terms of time, so once an application has opened a queue and plans to use it
in the future, keep the queue open, except when an application only needs to ‘put’ one message. The
MQPUT1 call was designed for this case: this call opens a queue, puts the message, and closes the queue,
eliminating the need to use the MQOPEN and MQCLOSE calls.

Queues are automatically closed when an application closes its connection to the queue manager.
However, it is a good practice to close all queues before disconnecting from the queue manager.

Each adapter written for FSA performed MQOPEN and MQCLOSE calls.

It is recommended to use the FAIL_IF_QUIESCING open option for the MQOPEN call. This will allow
the MQSeries administrators more control of the system.

5.2.2.1 MQOPEN Call

As input to the MQOPEN call, the application must supply:

• A connection handle, using the connection handle returned by the MQCONN call.
• A description of the object to open, using the object descriptor structure (MQOD).
• One or more options that control the action of the call.

The output from MQOPEN is:

• An object-handle that represents access to the queue. Use this as input to any subsequent MQI
calls for this queue.

• A modified object-descriptor structure, if the application is creating a dynamic queue.
• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

5.2.2.2 MQCLOSE Call

As input to the MQCLOSE call, the application must supply:

• A connection handle, using the same connection handle used to open the queue.
• The handle of the queue to close. This comes from the output of the MQOPEN call.

The output from MQCLOSE is:

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 57

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

5.2.3 Putting Messages On A Queue

To put messages on a queue, an application must use the MQOO_OUTPUT option when issuing the
MQOPEN call. After the queue has been opened using this option, the application can issue a MQPUT
call to put a message on the open queue. If the application is only putting one message and will not use the
queue again, use the MQPUT1 call.

It is recommended to use the FAIL_IF_QUIESCING put-message option for the MQPUT and MQPUT1
calls. This will allow the MQSeries administrators more control of the system.MQPUT call.

As input to the MQPUT call, the application must supply:

• A connection handle, using the connection handle that was returned when the application issued the
MQCONN call.

• A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

• A description of the message the application is putting on the queue. This is in the form of a
message descriptor structure.

• Control information, in the form of a put-message options structure. This options structure needs
to be redefined for every MQPUT call.

• The length of the application data contained within the message.
• The application data itself.

The output from the MQPUT call is:

• A reason code.
• A completion code.
• If the call completes successfully, it also returns the put-message options structure and the message

descriptor structure. One or both structures may have modified attributes within them. For more
detail, look at the MQSeries Application Programming Guide.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

5.2.4 Getting Messages From A Queue

To open a queue so that the messages on that particular queue can be browsed (does not remove the
message from the queue), use the MQOPEN call with the MQOO_BROWSE option. To get (and remove)
messages from a queue, an application must use the MQOO_INPUT_AS_Q_DEF,
MQOO_INPUT_SHARED, or MQOO_INPUT_EXCLUSIVE option when issuing the MQOPEN call.
Selection of one of these three options is used to specify if the application opens the queue in exclusive, or
shared, mode. See the MQSeries Application Programming Guide for more information. After the queue
has been opened using one of these options, the application can issue a MQGET call to get a message from
the open queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 58

By specifying the MsgId and/or CorrelId fields in the message descriptor structure, the application can
search the queue for a particular message. If the application uses MQGET call more than once (for
example, to step through the messages in the queue), it must set the MsgId and CorrelId fields of this
structure to null after each call. This prevents the call from filling these fields with the identifiers of the
message that were retrieved, and therefore getting messages with the same identifiers as the previous
message.

If the fields in the message descriptor structure are not specified to search for a particular message, the
MQGET call will retrieve the first message in the queue.

It is recommended to use the FAIL_IF_QUIESCING get-message option for the MQGET call. This will
allow the MQSeries administrators more control of the system.

5.2.4.1 MQGET Call

As input to the MQGET call, the application must supply:

• A connection handle, using the connection handle that was returned when the application issued the
MQCONN call.

• A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

• A description of the message the application wants to get from the queue. This is in the form of a
message descriptor structure.

• Control information in the form of a get-message options structure. This control information
describes if the application is browsing or removing messages. The control information also
describes if the MQI call waits (and how long it waits) for a message or if the call returns
immediately.

• The size of the buffer you have assigned to hold the message.
• The address of the storage location in which the message must be put.

The output from the MQGET call is:

• A reason code
• A completion code
• The message in the buffer area specified, if the call completed successfully
• The options structure, modified to show the name of the queue from which the message was

retrieved.
• The message descriptor structure, with the contents of the fields modified to describe the message

that was retrieved
• The length of the message
• Always verify the completion code. If the call is unsuccessful, inspect the reason code for an

indication as to why the call failed

5.2.5 Queue Manager Connectivity Guidelines

A queue manager supplies applications with MQSeries services. An application must have a connection to
a queue manager before it can use the services of that queue manager. An application can make this
connection explicitly (using the MQCONN call), or the connection can be made implicitly. For example,
CICS for MVS/ESA and CICS/MVS programs do not need to explicitly connect to a queue manager,

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 59

because the CICS system itself is connected to a queue manager. However, for portability it is
recommended that CICS for MVS/ESA and CICS/MVS programs use the MQCONN and MQDISC calls.

5.2.6 Connecting To and Disconnecting From a Queue Manager

To connect to a queue manager, an application must use the MQCONN call. To disconnect from a queue
manager, an application must use the MQDISC call.

MQCONN Call

As input to the MQCONN call, the application must supply a queue manager name. To connect to the
default queue manager, specify a queue manager name consisting entirely of blanks or starting with a null
character.

The output from MQCONN is:

• A connection handle, using this handle in subsequent MQI calls associated with this queue
manager.

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed. If the reason code indicates that the application is already connected to that queue
manager, the connection handle that is returned is the same as the one that was returned when the
application first connected. So the application probably should not issue the MQDISC call in this situation
because the calling application will expect to remain connected. The MQCONN call fails if the queue
manager is in a queuing state when issuing the call, or if the queue manager is shutting down.

MQDISC Call

As input to the MQDISC call, the application must supply the connection handle that was returned by
MQCONN when the application connected to the queue manager.

The output from MQDISC is:

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

All adapters written for FSA had to connect to the queue manager, open a queue, perform a MQGET or
MQPUT, close a queue, and disconnect from the queue manager. Each future adapter written for FSA will
also need to perform each of the above in order to get and put messages on a queue.

5.2.7 Pass the Connection Name as a Program Parameter

This allows a program to run unchanged on any Queue Manager. This provides the capability for multiple
concurrent instances; or a queue driven application could be moved to a different queue manager without
impacting the application code.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 60

5.2.8 Messaging Using More Than One Queue Manager

This arrangement is not typical for a real messaging application because both programs are running on the
same computer, and connected to the same queue manager. In a commercial application, the putting and
getting programs would probably be on different computers, and so connected to different queue managers.

This figure shows how messaging works when the program putting the message and the program getting
the message are on the different computers, and are connected to different queue managers.

In this situation, it is necessary to create message channels to carry MQSeries messages between the queue
managers.

5.3 Application Usage Guidelines for MQSeries Application Messaging Interface (AMI)

AMI is a highly abstracted interface to MQSeries that externalizes much of the complexity associated with
MQSeries usage into an external repository. Understanding its organization is key to its use. AMI is
organized into three major levels: Service Points, Policies, and Messages. Service Points contain
information related to queues. Policies contain information related to connections, queue interaction,
publish and subscribe and AMI user exits. Messages are not abstracted into the AMI repository and are
the containers that hold the application data to be placed to or received from queues.

The AMI is object oriented. All errors are reported in the form of thrown exceptions that are caught and
evaluated by the application.

The AMI repository is created, updated, and managed by MQSeries administrators who in each case will
ensure that objects match application requirements and options are appropriate. The use of an external
repository dramatically reduces the amount of middleware knowledge application programmers are
required to possess. Comparing the MQI and AMI guidelines demonstrate this conclusively.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 61

5.3.1 AMI Connectivity Guidelines

Any AMI application must establish a Session before it can make any other AMI calls. An AMI Session
is a container object that holds the queue manager connection information.

5.3.2 Establishing and Terminating AMI Sessions

In order to establish an AMI session it is necessary to create an AMI Session object. This object will be
used to establish connections to the underlying queue manager as well as provide the context for other AMI
objects. These Session objects are created with a logical name that must be unique within the application.

Connecting to a Queue Manager

Connecting to a queue manager is a result of running the “open” method of the previously created Session
object. An AMI Policy is provided as input. The “Initialization” section of the referenced Policy is used to
determine queue manager name, whether to use client or server binding and whether to run as a
trusted/fastpath application. When successfully opened, the Session contains an active connection to a
queue manager.

Disconnecting from a Queue Manager

Disconnecting from a queue manager is a result of running the “close” method of the previously created
Session object. An AMI policy is provided as input. Information from the policy is used in the case where
users exits are required. All related objects become invalid after having closed the AMI Session through
which they were created.

5.3.3 AMI Sender and AMI Receiver Objects

In order to put messages to and get messages from queues it in necessary to create AMI Sender and AMI
Receiver objects. These objects contain queue information and are used to direct interaction with those
queues.

5.3.3.1 Using AMI Sender objects

When creating a Sender object a Service Point name is provided as input. This is a reference to a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to put messages.

Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is
provided as input. The “Send” section of the policy is used to determine the options related to the
placement of messages including priority, persistence, expiry interval, report options and more.

To then send data using this Sender, the “send” method is used providing a Policy and message data as
input.

When complete, using the “close” method of the Sender invalidates its handle to the underlying MQSeries
queue and closes it.

5.3.3.2 Using AMI Receiver objects

When creating a Receiver object a Service Point name is provided as input. This is a reference to a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to get messages.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 62

Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is
provided as input. The “Receive” section of the policy is used to determine the options related to the
receipt of messages including wait interval, message conversion and more.

To then receive data using this Receiver, the “receive” method is used providing a Policy and message
buffer as input.

When complete, using the “close” method of the Receiver invalidates its handle to the underlying MQSeries
queue and closes it.

5.4 Application Interface Programming Options for Message Queue Interface (MQI)

There is a wide range of options for communicating with MQSeries programs including new interfaces for
message content as well as message delivery. Programs written using any of these message delivery styles
can communicate with each other and with programs written in any of the other MQSeries delivery styles.

5.4.1 Message Delivery

5.4.1.1 Message Queue Interface (MQI)

The Message Queue Interface (MQI) is the common API across all platforms. The calls made by the
applications running on each platform are common. This allows application programmers to focus on the
business logic of the application, rather than the interface differences of each platform. This makes it
much easier to write and maintain applications, as well as facilitate migration of applications from one
platform to another as required by changing business needs. Each adapter written for FSA made use of a
majority of the MQI function calls as shown below. The following figure represents the MQI.

Application Program

MQI

Queue Manager

M
Q

C
O

N
N

M
Q

D
IS

C

M
Q

O
P

E
N

M
Q

C
L

O
S

E

M
Q

P
U

T

M
Q

S
E

T

M
Q

IN
Q

M
Q

P
U

T
1

M
Q

G
E

T

M
Q

C
M

IT

M
Q

B
A

C
K

Process
Definition

Object

Queue
Manager
Object

Queue
Object

Message Queue Interface

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 63

5.4.1.2 Java Message Service (JMS)

Java Message Service (JMS) is supported by a MQSeries implementation of this Java standard API for
Enterprise Messaging Services. Using JMS, applications can communicate with other MQSeries JMS
applications, with applications written to the MQI, or to the Application Message Interface (AMI).

5.4.1.3 Application Messaging Interface (AMI)

The Application Messaging Interface (AMI) provides a simpler and higher-level programming interface
than the MQI. Although it has some limitations compared with the MQI, its function should be sufficient
for the majority of users. The AMI supports both point-to-point and publish/subscribe messaging models.
The AMI eliminates the need for application programmers to understand all of the options and functions
available in the MQI. This was not used at FSA, but is mentioned for future use if the need arises.

The MQSeries AMI can be used to build client applications, and the AMI will automatically build any
required headers as specified using the AMI, including the new RFH2 headers. The AMI is designed to
simplify the task of the application programmer, while enabling the more advanced functions and message
broker facilities to be used.

AMI is a high level API that moves many functions normally performed by messaging applications into the
middleware layer, where a set of policies defined by the enterprise is applied on the application's behalf.
Policies hold details of how messages are to be handled, for example, priority, confirmation of delivery,
timed expiry.

5.4.2 Message Content

5.4.2.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is an industry-wide standard for self-defining messages. It enables
diverse systems and databases to understand each other's data (for example, to identify fields) by indicating
both the content and the role of the data.

XML is supported in MQSeries Integrator Version 2 and MQSeries Workflow Version 3.2; XML will be
supported within MQSeries Messaging via the Common Messaging Interface.

For FSA, all messages passed into MQSeries Integrator were in XML. IBM is not advocating the use of
XML and the adoption of XML as a standard is outside the scope of this document.

Sample XML Message:

<?xml version ="1.0"?>
<!DOCTYPE Message SYSTEM "C:\TestEnvironment\XMLFiles\LifeQuote.dtd">
<!--Generated by XML Authority.-->
<Message issuedTime = "string" Authorisation = "string" sessionID = "string" creationTime = "string"
issueProgram =
"string" issueUser = "string" ID = "id1" issueSystem = "string" txnScope = "string" eventID = "string"
zoneOffset = "string"
language = "string"><!-- (Command.valueQuoteRequest* , Command.valueQuoteResponse*)-->
<Command.valueQuoteRequest responseDTD = "string" echoBack = "string" cmdMode = "always" ID =
"id2"><!--
(%CustomizeAgreement , SystemInfo)-->

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 64

<LifeAgreement ID = "id3" REFID = "string" status = "string" UUID = "UUID"><!-- (%Agreement ,
Product
)-->
<policyNumber>only text</policyNumber>
<effectiveFromDate>only text</effectiveFromDate>
<companyCode>only text</companyCode>
<ratingCompany>only text</ratingCompany>
<policyType>only text</policyType>
<renewalDate>only text</renewalDate>
<paymentPlan>only text</paymentPlan>
<agreementState>only text</agreementState>
<lineOfBusinessCode>only text</lineOfBusinessCode>
<effectiveFromDate>only text</effectiveFromDate>
<agentOfRecord>only text</agentOfRecord>
<agentCommission>only text</agentCommission>
<PolicyMessage/>
<MoneyObligation ID="id4" REFID="string" status="string" UUID="UUID"><!--(type, amount,
frequency)-->
<type>only text</type>
<amount>only text</amount>
<frequency>only text</frequency>
</MoneyObligation>
<Discount-Surcharge/>
<Underwriting/>
<Applicant ID = "id5" REFID = "string" status = "string" UUID = "UUID"><!-- (Person)-->
<Person ID = "id6" REFID = "string" status = "string" UUID = "UUID"><!-- (%Party , Body
, PartyActivity* , Residency , PartyContactPointUsage?)-->
<id>only text</id>
<uuid>only text</uuid>
<FamilyName/>
<!-- <UnstructuredName>only text</UnstructuredName> -->
<Body ID = "id7" REFID = "string" status = "string" UUID = "UUID"><!-- (gender ,
height , weight , birthdate , MedicalCondition+)-->
<gender>Female</gender>
<height>6.2</height>
<weight>250</weight>
<birthdate>01/01/1980</birthdate>
<MedicalCondition ID = "id8" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>High Blood Pressure</description>
<response>Yes</response>
</MedicalCondition>
<MedicalCondition ID = "id9" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>Heart Disease</description>
<response>No</response>
</MedicalCondition>

</Body>

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 65

5.5 EAI Common Error Handling Guidelines

Whenever possible, the queue manager returns any errors as soon as a MQI call is made. The three most
common errors that the queue manager can report immediately are described in this section.

5.5.1 Failure of a MQI Call

An example of a MQI call failure is being unable to put a message to a queue because the queue is full.
The completion code and return code of the MQI call specify the nature of the failure. Applications should
inspect these codes for every MQI call and be able to handle all possible return codes.

5.5.2 System Interruption

The queue manager is an example of a system component needed by the application and when the queue
manager is interrupted, the application encounters an error. Applications must ensure no data is lost due to
this sort of interruption. To ensure no data loss, applications will get and put messages under syncpoint.
This syncpoint activity can be controlled by the queue manager or by some external resource coordinator
(e.g. CICS, Encina, etc.).

5.5.3 Unable to Process Messages

Messages containing data that cannot be processed successfully are known as poisoned messages. When
applications operate under syncpoint, if the application cannot successfully process a message, the
MQGET call is backed out. The queue manager maintains a count (in the BackoutCount field of the
message descriptor) of the number of times this happens for MQGET calls which DO NOT use any of the
Browse type get message options. Messages whose backout counts increase over time are being repeatedly
rejected by the application – the application should be designed to handle such situations. There are many
different tactics to handling poisoned messages. One method would be to write the messages to a file and a
common “poison message application” attempt to process them at a later point in time. Another method is
to have the application itself deal with the message. Messages could also be written to the dead letter queue
and then be processed by a dead letter handler. Based on your application requirements a method should be
adopted.

5.5.4 Responding to Errors

Applications should respond in a similar manner to errors returned by MQI calls. One possible way to
implement this common error handling methodology is to provide error-handling routines for the
application developer. Use of these common error-handling routines ensures that all application
programmers handle MQSeries errors in the same way and do not have to write their own error handling
routines.

Note: Refer to Section 8.1 - Reusable EAI Functions: EAI Common Log Component for additional
information regarding common error handling. The EAI Common Log Component interface enables
applications to record events to local and centralized logs.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 66

5.6 Triggered queues and applications

5.6.1 Designing MQSeries Applications
Some MQSeries applications that serve queues run continuously, and are always available to retrieve
messages that arrive on the queues. However, this may not be desirable when the number of messages
arriving on the queues is unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

MQSeries provides a facility that enables an application to be started automatically when there are
messages available to retrieve. This facility is known as triggering.

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application queue. Note that no application has this queue open for input. However, this fact is
relevant only to trigger type FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger
event. If so, a trigger event is generated. Information that is held within the associated process
definition object is used when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with
this application queue, but only if an application (trigger monitor) has the initiation queue open for
input.

4. The trigger monitor retrieves the trigger message from the initiation queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 67

5. The trigger monitor issues a command to start application B (the server application).
6. Application B opens the application queue and retrieves the message.

Notes:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or
DEPTH, no trigger event will occur since the queue is already being served.

2. If the initiation queue is not open for input, the queue manager will not generate any trigger
messages, it will wait until an application opens the initiation queue for input.

3. When using triggering for channels, you are recommended to use trigger type FIRST or DEPTH.

Each adapter created for FSA utilized triggering. The MQSeries object definitions can be seen by viewing
each system script file contained in the Clearcase repository. Specifically, you want to look for the objects
with the “trigger” attribute.

5.6.2 Starting MQSeries Applications
Trigger messages created because of trigger events that are not part of a unit of work are:

− put on the initiation queue,
− put outside any unit of work, with no dependence on any other messages
− available for retrieval by the trigger monitor immediately

Trigger messages created because of trigger events that are a part of a unit of work are put on the initiation
queue, as part of the same unit of work. Trigger monitors cannot retrieve these trigger messages until the
unit of work completes. This applies whether the unit of work is committed or backed out. If the queue
manager fails to put a trigger message on an initiation queue, it will be put on the dead-letter (undelivered-
message) queue.

Notes:

1. The queue manager counts both committed and uncommitted messages when it assesses whether
the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of
work is backed out so that a trigger message is always available when the required conditions are
met. An example is a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This causes the queue manager to create a trigger message. If another put-request
occurs from another unit of work, this does not cause another trigger event. Rather, the number of
messages on the application queue has now changed from one to two, which does not satisfy the
conditions for a trigger event. If the first unit of work is backed out, but the second is committed, a
trigger message is still created.

However, this does mean that trigger messages are sometimes created when the conditions for a
trigger event are not satisfied. Applications that use triggering must always be prepared to handle
this situation. It is recommended to use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager
counts committed messages only.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 68

For FSA, the adapters were triggered on the trigger type of “FIRST”, the queues were then read until
empty.

5.7 Application Usage Guidelines for Data Integrator

5.7.1 Data Integrator Components

Three components must be running on each machine that will be using Data Integrator: the Manager,
Sender, and Receiver. Each component performs a different task related to the transfer of data using MQ
Series. Each component performs common duties such as monitoring its input queue, logging events and
sending status messages. When two components are located on different queue managers, the destination
will be resolved to the appropriate transmission queue and sent to its destination.

5.7.1.1 e-Adapter Manager

The originating queue manager in a transaction acts as the Manager, and is responsible for starting and
ending the transfer unit of work and managing all transfers. The Manager determines the appropriate
Sender, and the message is sent to that Sender’s input queue.

At the end of a transaction, the Manager returns one of the following completion codes: Request completed
successfully, request failed, request expired, or request canceled. In the event of a failure, additional
information, including error codes, is returned as well.

5.7.1.2 e-Adapter Sender

The source queue manager in a transaction acts as the Sender, and is responsible for transforming the data
to be sent into MQSeries messages. Depending on the nature of the transaction, the Sender may send the
message(s) directly to the specified Receiver or move them to a staging area. Once its work is complete, the
Sender will report back to the Manager of the transaction.

5.7.1.3 e-Adapter Receiver

The destination queue manager in a transaction acts as the Receiver, and is responsible for processing the
transfer request from the Sender and transforming the MQSeries messages into the target data. Once
finished it will send a reply back to the Manager of the transaction.

5.7.2 Common Script Arguments

A data transfer using Data Integrator can be performed directly from the command line or typed into a
command script. There are a number of arguments that can be used with the ‘FTF’ command to
accomplish this. The most commonly used ones are listed below, along with a brief description.

5.7.2.1 Queue Manager Arguments

• lqm – Local Queue Manager – the queue manager from which the command is issued.

• oqm – Originating Queue Manager – the queue manager where the Manager will operate, defaults
to the lqm.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 69

• sqm – Source Queue Manager – the queue manager where the Sender will operate, defaults to the
lqm.

• dqm - Destination Queue Manager – the queue manager where the Receiver will operate.

5.7.2.2 Source/Target File Arguments

• spath – Source Path – the full path and filename of the source file to be transmitted.

• dpath – Destination Path - the full path and filename of the destination file.

5.7.2.3 Process Arguments

• immed – this argument will force the transfer request to be processed synchronously between the
Sender and Receiver. The Receiver will begin processing immediately upon receipt of the
first message, instead of waiting until all messages have arrived (the default method).
This technique requires less queue storage on the destination machine.

5.7.2.4 User Exit Arguments

These arguments are used when a process needs to be started immediately following the completion of a
data transfer. A Unix script, specified using the user exit arguments, will be run once the transaction has
finished. These arguments must be placed together and in order.

• exit – Exit Number – the exit number to be invoked.

• exitdll – DLLName – the DLL used to invoke the exit module.

• exitentry – Entry Point – the name of the function in the DLL that contains the exit module.

• exitdata – Data Value – the command-line argument that will be executed.

5.7.2.5 Data Specification Arguments

• compress – will cause the data to be compressed before it is sent.

• pool – Pool Name – the name of the data pool that will be used for transferring between the Sender
and Receiver. This pool must be defined in the configuration file, and will default to the
default pool specified in this file.

5.7.2.6 OS/390 Arguments

These arguments are only necessary when dealing with a target machine running OS/390.

• blksize – Block Size – the block size for the target file, it is usually specified .

• lrecl – Logical Record Length – the logical record length for the target file, it is usually specified.

5.7.2.7 Additional Script Arguments

Additional script arguments may be found in the e-Adapter Technical Reference.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 70

5.8 Application Usage Guidelines for Data Integrator Status Utility

The Data Integrator product can be configured to generate status and diagnostic messages for each Data
Integrator file transfer. These messages are in XML format and can be used to verify that file transfers
occurred and assist in problem determination when a file could not be transferred.

5.8.1 Storing the status messages

When a file is transferred using Data Integrator, the related status messages are directed to an MQSeries
queue. An MQSeries Integrator message flow reads messages from the queue and places them into an
Oracle database. These messages are retained in the database awaiting later retrieval and analysis.

5.8.2 Retrieving the status messages

Messages are retrieved from the Oracle database via an MQSeries Integrator message flow. Requests for
information are in XML format and they may contain one of several search criteria, such as a date/time
range or a unique Data Integrator file transfer identifier. Using MQSeries Integrator as the retrieval
mechanism allows messages to be requested from any platform that has MQSeries access to the EAI bus.

5.9 Application Usage Guidelines for MQSeries Integrator

5.9.1 Defining Messages

MQSeries Integrator provides a message brokering function that can transform messages from one format
to another. The brokers that manage these transformations need to interpret the structure and content of the
messages they receive to perform the full range of transformation functions available with MQSeries
Integrator.

5.9.1.1 Message domains

The messages supported by MQSeries Integrator are of three broad types that are identified by a property
of the message called the message domain:

• A message can be unstructured: its message domain must be set to BLOB.

• A message can be self-defining: its message domain must be set to XML.

Two additional domains are included in this category to support JMS messages: the domain
JMSMap can be used for jms_map messages and the domain JMSStream can be used for
jms_stream messages.

• A message can be predefined. Its message domain must be set to one of:

q MRM

q NEON

A predefined message has a logical structure and a physical structure:

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 71

q The logical structure of a predefined message is a tree structure that demonstrates the
hierarchical relationships between the components of a message.

q The physical structure of a message, which is also referred to as its wire format, is just a string
of bits and bytes. Without the logical structure, the physical structure (the bit-stream) has no
intrinsic meaning.

5.9.1.2 Unstructured messages in the BLOB domain

An unstructured message must have a message domain of BLOB. It has no known (or defined structure).
These messages can be processed and routed by MQSeries Integrator, but the manipulation that you can
perform is very limited. You can perform some simple manipulation at the message level, and take other
actions on the whole message.

5.9.1.3 Self-defining messages in the XML domain

A self-defining message must have a message domain of XML. It carries the information about its content
and structure within the message. Its definition is not held anywhere else. When a self-defining message is
received by the broker, it is handled by the XML parser, and a tree is created according to the XML
definitions contained within that message. A self-defining message is also known as a generic XML
message. It does not have a recorded format.

A self-defining message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it passes
through the message flow. The message can also be manipulated, constructed, and reformatted by nodes in
the message flow, using a specialized form of standard database Structured Query Language (SQL). This
specialized form is known as Extended SQL, or ESQL, and supports MQSeries Integrator processing of
the message structure. This means that although you do not have to define the message structure to the
Control Center, you do have to understand the definition to be able to construct valid ESQL for message
manipulation.

5.9.1.4 Predefined messages in the MRM domain

A predefined message in the MRM message domain must have its message domain set to MRM. It must be
defined to the Message Repository Manager, a component of the Configuration Manager. You can define
messages to the MRM domain using the Control Center (Message Sets view). The MRM maintains these
messages in the message repository. You can also predefine a message to the MRM in the XML message
domain. If you define a message to the XML domain, you can use all the facilities available to MRM
domain messages to manipulate and reference the message in the nodes within your message flows in the
Control Center.

However, you are not expected to assign these message sets to a broker, nor to deploy them. Because the
domain is set to XML, the XML parser is invoked by the broker and does not reference any external
message definition. An MRM message can be handled by every IBM-supplied message processing node.
The whole message, or parts of the message, can be stored in a database, and headers can be added to or
removed from the message as it passes through the message flow. The message can be manipulated using
ESQL defined within all message processing nodes that support manipulation (for example, compute and
filter).

You can also transform any message in the MRM domain into any other format defined to the MRM using
ESQL (in most cases, just one line of ESQL). This includes code page and encoding conversion. It

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 72

provides the significant benefit that data conversion exists in MQSeries and therefore applications are not
required to provide this function.

Messages with a message domain of MRM have three other characteristics for further classification:

• Message format

Three message formats are supported by the MRM:

q A message can have a message format of CWF (Custom Wire Format).

These messages are MRM representations of legacy data structures created in the C or
COBOL programming language, and imported into the MRM using the Control Center
facilities. You can also create new messages using this format.

q A message can have a message format of PDF.

This is a specialized format used predominantly in the finance industry. It does not have any
connection with the Portable Document Format defined by Adobe (also known as PDF). If you
already use messages of this format, you can continue to use them and process them by
specifying this format in the definitions.

q A message can have a message format of XML.

These messages are represented as XML documents. They conform to an XML DTD
(Document Type Definition) that can be generated by the Control Center for documentation
purposes.

• Message set

This identifies the message set to which each message belongs. This is specified as the message set
identifier, not the message set name. When you define a message in the MRM message domain,
you must define a message set that contains it. A message set can contain one or more related
messages.

• Message type

The message type identifies the message definition within the set. It is the unique identifier for each
message of this particular content and format.

5.9.1.4.1 Predefined messages in the NEON domain

A predefined message in the NEON message domain must have its message domain set to NEON. It must
be defined using the MQSeries Integrator Version 1 graphical utilities that are supplied with MQSeries
Integrator Version 2. You can create new messages and use existing messages defined to the NEON
domain. A NEON message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it passes
through the message flow. The NEONFormatter node can be used to transform a NEON message. No other
node can manipulate the message contents.

5.9.2 Designing Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individual
actions along the message flow. MQSeries Integrator includes a range of message processing nodes, called

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 73

primitives, that provide most of the function that you will need in most situations. A message flow and the
message processing nodes it contains describes the transformation and routing applied to an incoming
message to transform it into outgoing messages. These actions form the rules by which the message is
processed. A message flow can also be made up of a sequence of other message flows, that are joined
together. This function allows you to define a message flow containing a specific sequence of message
processing nodes, and reuse that message flow in other message flows wherever that action is needed.
When you complete the creation of your message flow, you can assign it for execution to one or more
brokers. When you do this, the message flow must be operationally complete. That is, it must contain at
least one MQInput node (one of the primitives). Most message flows will also contain at least one
MQOutput or one Publication node, although this is not required (both of these nodes are also primitives).

5.9.2.1 Message flows and units of work

A message flow is transactional. You can define your message flows to perform all processing within a
single unit of work. Therefore the receipt of every message by the input node, and the database operations
performed as a result of that message being received and processed by the message flow, are coordinated.
If an error occurs within a transactional message flow, the transaction is rolled back and the message will
be handled according to normal error handling rules. You can also define a message flow to work outside
of a unit of work if you do not want this support.

5.9.2.2 Parallel processing of message flow instances

When you define, assign, and deploy a message flow, the broker automatically starts an instance of the
message flow for each input node (one or more). This is the default behavior. Each instance retrieves a
message from the input node, and runs in parallel with other instances that retrieve a message from other
input nodes. If you want to further increase the throughput of this message flow, you can set a property of
the assigned message flow that defines how many additional instances are to be started by the broker for
that message flow. You can set properties of the input node to exercise control over the order in which
messages are processed.

You can also increase message flow throughput by assigning more than one copy of the message flow to
the same broker. However, this is only appropriate if the message order is not important, because the
multiple copies of the message flow are handled independently by the broker, with no correlation between
them. Therefore, if more than one copy of the same message flow is active within the broker, each copy can
be processing a message at the same time, from the same queue. It is possible for the processing time of a
message flow to vary, and multiple message flows accessing the same queue could therefore read the
messages from the queue in a random order. Also, the order of messages produced by the message flows
might not correspond to the order of the original messages. You can influence the order in which the input
node removes messages from the queue (using the Order Mode property). You are therefore recommended
to increase the instances of a single copy of the message flow if you want to increase throughput and
parallel processing but wish to have control over the message order.

5.9.2.3 Transformation

Most enterprises have applications that have been developed over many years, on different systems, using
different programming languages, and different methods of communication. Standard message queuing
technology can bridge differences like these, but applications still need to be aware of, and negotiate, the
format in which the messages flow. With MQSeries Integrator the knowledge of each application is stored
just once in the broker and each message is translated into the receiving application’s format. Because the

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 74

broker knows the requirements of each application, it can transform the message to the correct format
without the sending or receiving application needing any modification.
A message flow can completely rebuild a message, convert it from one format to another (whether format
means order of fields, byte order, language, and so on), remove content from the message, or introduce
specific data into it.

5.9.2.4 Intelligent routing

Intelligent routing encapsulates business knowledge of how information should be distributed between
sending and receiving applications throughout the enterprise. This knowledge is stored in the broker as a set
of rules that are applied to each message as it passes through the broker. Routing is independent of the
requirement for message transformation, although you will usually define sets of rules (as message flows)
that combine the two in some way. Messages are distributed according to criteria applied to the values of
fields within the message.

You can also establish a more dynamic routing option by building additional routing information into the
message when it is processed. Optional sets of rules are set up to receive messages according to values
(destinations) set into the message. You can establish these rules such that a message is processed by one or
more of the optional sets of rules, in an order determined by the added message content. You can create,
modify, and use these rules to develop a very flexible approach to the distribution of information. New
ideas and requirements can be stated clearly, and turned into new or changed rules in the broker, and your
business goals are met. You don’t have to rework your applications. Your business processes range from
the simple to the very complex. You can create rules to cover every case, building new rules, and reusing
and combining existing ones to develop even the most complex solution.

5.9.2.5 Enriching message content

When a message is processed by a message flow, it is possible to update and add to the message content.
This allows you to add value between sender and receiver in any way you choose. A typical way in which
you can enhance the message content is by adding data from a database. This can be done by appending
fields to the message, or merging information from the two sources. For example, a new field value can be
calculated using the database information.

5.9.3 Using Message Processing Nodes

Message flow nodes are the key components of a message flow. A message processing node is a stand-
alone procedure defined within a message flow that receives a message, performs a specific action against
it, and outputs zero or more messages as a result of the action it has taken. This section describes the types
of nodes, using the primitives included in MQSeries Integrator to illustrate the function they provide. You
can create additional message processing nodes to provide enhanced or replacement function if you choose,
except where noted.

5.9.3.1 MQSI Primitives

The MQSeries Integrator 2.0.1 Control Center provides a number of message flow nodes. The table below
identifies the message flow nodes supplied with MQSeries Integrator, which are known as the IBM
Primitives.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 75

IBM Primitive Function

Check node Compares the format of an incoming message with a predefined message
specification.

Compute node Derives an output message from an input message and, optionally, from data
taken from a external database. A computation can be applied to each element
of the input message before the output message is constructed.

Database node Combines database operations with message processing.

DataDelete node Deletes one or more rows from a database table.

DataInsert node Inserts one or more rows in a database table.

DataUpdate node Updates the contents of one or more rows in a database table.

Extract node Derives an output message from the fields in an input message.

Filter node Evaluates an input message against an ESQL expression.

FlowOrder node Determines a specific order for the processing of a message.

Input Terminal Provides an in terminal for an embedded message flow.

Label node Receives a message from a RouteToLabel node.

MQInput node Reads MQSeries messages from a specified message queue.

MQOutput node Writes MQSeries messages to a specified message queue.

MQReply node Sends a response message to the originator of the message that caused this
message flow to be invoked.

NEONFormatter node Transforms an input message using the NEON Formatter engine.

NEONRules node Passes an input message to the NEON Rules engine for evaluation.

Output Terminal Provides an out terminal for an embedded message flow.

Publication node Publishes a message to subscribers.

ResetContentDescriptor
node

Reparses the bit stream of an input message.

RouteToLabel node Routes a message to one or more specific destinations that are identified in the
message.

Throw node Throws an exception within a message flow.

Trace node Generates a trace record.

TryCatch node Catches any exceptions that are thrown by nodes further on in the message
flow.

Warehouse node Stores message data in a data repository.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 76

5.9.3.2 Common node characteristics

Every message processing node has a fixed number of input points and output points. These points are
known as terminals. Each node normally has one input terminal (on which it receives messages), and
multiple output terminals to handle a variety of situations. Output terminals are defined according to the
characteristics of the individual node. For example, a filter node has true, false, failure, and unknown
output terminals.

A Connector joins an output terminal of one node to an input terminal of the next node in the message flow.
You can leave an output terminal unconnected, or you can connect a single output terminal to more than
one target node. After a node has finished processing a message, the connectors defined from the node’s
output terminals determine which node(s), process the message next. If a node has more than one output
terminal connected to a target node, the node determines the order in which the different execution paths are
executed. If a single output terminal has more than one connector to a target node, the broker determines
the order in which the different execution paths are executed. You cannot change the order of processing
determined by the node or broker.

A node does not always produce an output message for every output terminal. Often it produces one
output for a specific terminal depending on the message received. For example, a filter node will typically
send a message on either the true terminal, or the false terminal, but not both. When the processing
determined by one connector has been completed, the node issues the message again to the next connector,
until all possible paths have been completed. Updates to a message are never propagated to previously
executed nodes, only to nodes following the node in which the update has been made. The message flow
can only accept a new message for processing when all paths through the message flow (that is, all
connected nodes from all output terminals, as appropriate) have been completed.

5.9.3.3 Input and output nodes

Some message nodes have special characteristics. They define points in the message flow to which clients
send messages (input nodes or MQInput), or from which clients receive messages (output nodes or
MQOutput). These special nodes represent MQSeries queues. Client applications interact with these nodes
by putting messages to, or getting messages from, these queues. A message flow has a set of (one or more)
input nodes to which senders can post their messages, and a set of output nodes from which receivers can
pick up messages.

If a message is being processed under transactional control, the output node only puts the message to the
destination queue when all processing by the message flow has been successfully completed, unless the
output node is set up to put the message outside the global (message flow) transaction. Before you can use
a message flow, the input nodes must be associated with queues that represent the sources of messages. An
output node must also be associated with a queue in most cases. However, you can set an output node
property that causes the node to put the message to every queue in a destination list, which is contained
within the message itself. You must use the primitive MQInput node for every message flow input node.
You cannot replace it with one of your own. You can replace the output node if you choose.

Publication nodes are a special type of output node that use the queues identified by current subscribers
whose subscriptions match the characteristics of the current message. Subscribers provide the identity of
the queue on which they want to receive all matching publications.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 77

5.9.3.4 Processing messages

All nodes other than the input and output nodes receive an input message from the previous node in the
message flow and transform it into zero or more output messages to be made available to the next node (or
nodes) in the message flow. Messages passing between nodes are not put to an intermediate queue: each
message is held in local memory. These nodes can perform any kind of processing on a message. For
example, they can:

• Reformat the message (NEONFormatter).

• Transform the message (Compute).

• Subset the data within the message (Extract).

• Route the message to one or more targets (NEONRules).

• Archive the message in a message warehouse (Warehouse).

• Update database information from the message content (Database).

5.9.3.5 Error handling

All primitive message processing nodes have a failure output terminal, to which a message is transferred if
an error is detected within the node. If the failure terminal is not connected to a target node, an exception is
generated and propagated back towards the MQInput node:

• If a TryCatch node is encountered before the exception reaches the MQInput node, the flow of
control proceeds down the catch terminal. The message that is propagated through the catch
terminal is the message originally received by the TryCatch node: any changes made to the
message by later nodes in the message flow are not preserved. However, any external processing
(for example, updates to a database through a Database node) are preserved. It is not possible to
rollback these database updates from within the message flow.

Before the TryCatch node passes on the message to the node connected to the catch terminal, it
adds the exception information to the ExceptionList item in the message tree. Existing information
in the ExceptionList field in the message is written to the local error log, and then overwritten with
the new exception information.

• If the message reaches the input node:

– If the input node’s catch terminal is connected to another node, the message is propagated
to that node. In this case, an error is not recorded in the local error log.

– If the input node’s catch terminal is not connected, and the message is being processed
under transactional control, the message is returned to the input queue. An error is
recorded in the local error log. The MQInput node will then read the message again for
retry. It first checks to see if the backout count for this message has now exceeded the
backout threshold:

§ If the backout count has not exceeded the threshold, the message processing is
retried.

§ If the backout count has exceeded the threshold, and the failure terminal is
connected to another node, the message is propagated to that node.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 78

If the failure terminal is not connected, the message is put on the backout queue, if
one is defined for this input queue, or the queue manager’s dead-letter queue
(DLQ), if a backout queue does not exist.

If the queue manager does not have a DLQ defined, the message is left on the
input queue. (If the broker’s queue manager has been created by the create broker
command mqsicreatebroker, a DLQ has been defined and enabled for this queue
manager.)

– If the catch terminal is not connected and the message is not being processed under
transactional control, the message is discarded.

You can provide a minimum level of error handling within every message flow you define if you choose.
This minimum level might includes:

• Define a dead-letter queue (DLQ) on the broker’s queue manager (or use the default supplied
DLQ).

• Change the queue manager’s attributes to use this DLQ.

5.9.3.6 Adding or enhancing message processing nodes

MQSeries Integrator provides an external interface that allows you to add new capabilities to the broker by
implementing new node types. The interface comprises a set of calls implemented in the C language. These
calls are of two kinds:

• Calls that the broker makes to the node, for example to initialize the node.

• Calls that the node makes to the broker, for example, to inquire about the content of the message
being processed.

5.9.4 Assigning and Deploying Resources to Brokers

The complete process of assigning resources and deploying them to a broker is too lengthy to be included in
this guide. The steps are completely documented in Chapter 7 and 8 in the MQSeries Integrator “Using the
Control Center” Manual. The manual can be found at the following url:

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/mqsiv202.html

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 79

6 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES)

The EAI application will be interfacing with several systems. The interfaces between EAI and other
systems may require special mechanisms called adapters and bridges.

An adapter or a bridge is a piece of software that moves data between a message on a queue and an
application or environment. Adapters handle data inbound-to and outbound-from the application or
environment.

6.1 MQSeries Application Adapter

MQSeries provides a mechanism for assured delivery of messages, which can be sent even when the target
is disconnected. It can be used to distribute work around a large number of disparate systems in an
environment where trying to propagate transactional two-phase commit is not practical.

6.2 Adapter Classifications

6.2.1 Type of Message

Adapters may be classified by the type of message that will be processed:

• Request/Reply
An incoming XML request message from the front-end is posted to the back-end. In response, the
adapter always synchronously routes the back-end results in the form of a valid XML document.

• Fire & Forget
An incoming XML request from the front-end is posted to the back-end and no response is
required.

• Notification
The adapter routes an incoming message from the back-end to the front-end in the form of a valid
XML message. This may be the reply to a message received.

All adapters written for FSA were of the Request/Reply type.

6.2.2 Interface Type

Adapters may be classified by interface type:

• Java Object - Creates Java objects that corresponds to the XML message elements.

• Host structure -

1. Converts data from valid XML values to valid host values. Uses tables for simple cases and
code for complex transformations.

2. Creates host objects that correspond to the host data structures and maps the values from the
XML objects to the host objects

• XML Message – The input data and the output data are both in XML format. The adapter may
add the standard header and perform other functions, but does not need to transform the message

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 80

6.3 MQSeries-CICS/ESA Bridge

The MQSeries-CICS/ESA Bridge enables an application, not running in a CICS environment, to run a
program or transaction on CICS/ESA and get a response back. This non-CICS application can be run from
any environment that has access to a MQSeries network that encompasses MQSeries for MVS/ESA.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It must
conform to the DPL subset of the CICS API that is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can use BMS or
TC commands. It can be conversational or part of a pseudo conversation. It is permitted to issue
syncpoints.

6.3.1 Using the CICS Bridge

Only FSA applications that use a CICS commarea to communicate can utilize the CICS Bridge; any
applications that use terminal I/O CICS commands can use the CICS DPL Bridge.

The CICS Bridge allows an application to run a single CICS program or a ‘set’ of CICS programs (often
referred to as a unit of work). The adapter written for the CPS system utilizes the CICS Bridge. For more
information on the CPS adapter please reference the Technical Specification document. The CICS Bridge
works with the application that waits for a response to come back before it runs the next CICS program
(synchronous processing). It also works with the application that requests one or more CICS programs to
run, but doesn't wait for a response (asynchronous processing).

The CICS Bridge also allows an application to run a 3270-based CICS transaction, without knowledge of
the 3270 data stream. The CICS Bridge uses standard CICS and MQSeries security features. It can be
configured to authenticate, trust, or ignore the requestor's user ID.

With this flexibility, there are many instances where the CICS Bridge can be used. For example,

• To write a new MQSeries application that needs access to logic or data (or both) that reside on
your CICS server.

• Enabling a Lotus Notes application to run CICS programs.

• To be able to access CICS applications from a MQSeries Java client application or a web browser
using the MQSeries Internet gateway.

6.3.2 CICS Bridge at Work

This section explains how the CICS Bridge works and the options available when deciding what level of
security to use.

With respect to system setup, note the following:

• Ensure that the MQSeries-CICS adapter is enabled.

• The CICS Bridge requires that both MQSeries and CICS are running in the same MVS image.

• The MQSeries request queue must be local to the CICS Bridge, however the response queue can be
local or remote.

• The CICS bridge tasks must run in the same CICS as the bridge monitor. The user programs can
be in the same or a different CICS system.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 81

6.4 Running CICS DPL programs

Data necessary to run the program is provided in the MQSeries message. The bridge builds a
COMMAREA from this data, and runs the program using EXEC CICS LINK.

The following shows the components and data flow to run a CICS DPL program.

Figure 1 – CICS DPL Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS program, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start
unit of work’ message is waiting (CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS DPL Bridge task is started with the
appropriate authority.

4. The CICS DPL Bridge task removes the message from the request queue.

5. The CICS DPL Bridge task builds a COMMAREA from the data in the message and issues an
EXEC CICS LINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

7. The CICS DPL Bridge task reads the COMMAREA, creates a message, and puts it on the reply-to
queue specified in the request message. All response messages (normal and error, requests and
replies) are put to the reply-to queue with default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user programs. There is no limit to
the number of messages you can send to make up a unit of work.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 82

6.4.1 Running CICS 3270 transactions

Data necessary to run the transaction is provided in the MQSeries message. The CICS transaction runs as
if it has a real 3270 terminal, but instead uses one or more MQSeries messages to communicate between
the CICS transaction and the MQSeries application. Unlike traditional 3270 emulators, the bridge does not
work by replacing the VTAM flows with MQSeries messages.

Instead, the message consists of a number of parts called vectors, each of which corresponds to an EXEC
CICS request. Therefore, the application is talking directly to the CICS transaction, rather than via an
emulator, using the actual data used by the transaction (known as application data structures or ADSs).

The following shows the components and data flows to run a CICS 3270 transaction.

Figure 2 – CICS 3270 Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS transaction, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start unit of
work’ message is waiting CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the appropriate
authority.

4. The MQ-CICS bridge exit removes the message from the queue and changes task to run a user
transaction.

5. Vectors in the message provide data to answer all terminal related input EXEC CICS requests in the
transaction.

6. Terminal related output EXEC CICS requests result in output vectors being built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message and puts this on the reply-
to queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 83

8. The CICS 3270 bridge task ends.

A traditional CICS application usually consists of one or more transactions linked together as a pseudo
conversation. In general, the 3270 terminal user entering data onto the screen and pressing an AID key
starts each transaction. This model of application can be emulated by a MQSeries application. A message
is built for the first transaction, containing information about the transaction, and input vectors. This is put
on the queue.

The reply message will consist of the output vectors, the name of the next transaction to be run, and a token
that is used to represent the pseudo conversation. The MQSeries application builds a new input message,
with the transaction name set to the next transaction and the facility token set to the value returned on the
previous message. Vectors for this second transaction are added to the message, and the message put on
the queue. This process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model. In this model, the
original message might not contain all the data to run the transaction. If the transaction issues a request
that cannot be answered by any of the vectors in the message, a message is put onto the reply-to queue
requesting more data. The MQSeries application gets this message and puts a new message back to the
queue with a vector to satisfy the request.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 84

7 APPLICATION INTEGRATION EXAMPLES
This section contains representative examples of interfaces using each of the EAI middleware products
thereby providing guidance on integrating FSA applications with the EAI Core Architecture.

7.1 Data Integrator Example

Post-Secondary Education Participants System (PEPS)

PEPS sends a file to eCB (eCampus Based) and COD (Common Origination and Disbursement) using the
Data Integrator product via the EAI Bus.

The following steps were used to accomplish this:

Name Description Object Type

1 Install Software Install MQSeries and Data Integrator software on
the trading partner systems (PEPS , eCB, COD).

System Software

2 Configure Directory
Monitor

Configure a directory monitor process on PEPS.
The directory monitor process (delivered with the
Data Integrator software) polls a directory looking
for the existence of a new file matching certain
naming convention criteria.

Script File

3 Data Integrator When the file is found, a file transfer request is
submitted and the file is moved from PEPS to the
EAI Bus. Files that are moved via Data Integrator
are always compressed and delivered once and
only once. Partial files are never sent to the target
system. Data Integrator ensures that only
complete files are written out.

File

4 Java Adapter Once the file arrives on the EAI Bus, an adapter is
triggered. Data Integrator allows “exit” points at
different stages in the file transfer. A process can
be run before the file is sent, or after the file is
received at the target system. A Java adapter is
triggered after the PEPS file is delivered to the Bus
to extract all the delta records.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 85

Name Description Object Type

5 Data Integrator After the delta records are written out to a separate
file, another file transfer request is made and the
file is sent to COD. The Data Integrator exit
points also allow the same file to be delivered to
multiple locations. For instance, after the PEPS
file is received on the EAI Bus, but before the Java
adapter is called, the file is sent to eCB, another
Trading Partner.

6 Data Integrator Status Status messages are returned to the sending
system, so it will get confirmation that the file
transfer was successful.

Data Integrator

7.2 MQSeries Integrator Example

When eCB has a UTCL file to send to FMS, eCB places the file in a directory that Data Integrator
monitors. Data Integrator transfers the file to the EAI Bus via MQSeries. At the EAI Bus, the
file is fed into an MQSI message flow as a single message. The message flow performs the
following action on the UTCL file:

a. Performs any necessary FMS validations and transformation.
b. Creates an SQL statement to place the message in the appropriate table.
c. Places the SQL statement on MQSeries queues bound for the FMS MQSeries

queue manager.

The EAI Bus delivers the message to an MQSeries queue, for the FMS-MQSeries Adapter, on
the FMS System. The FMS-MQSeries Adapter, triggered by the MQSeries Trigger Monitor,
retrieves the message from the MQSeries queue and executes the SQL statement contained
therein against the FMS database.

Name Description Object Type

1 eCB eCB Application system creates a file. File

2 Data Integrator Data Integrator places the file on a queue which
transfers it to the EAI Bus via MQSeries.

MQSeries Message

3 MQSI Broker eCB UTCL file is now a message that is
transformed into multiple SQL statements. First
validations required by FMS are performed.

Next the appropriate SQL statement are created

MQSI Message Flow

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 86

Name Description Object Type

and passed to MQSeries.

4 MQSeries Queue Message is sent to FMS via MQSeries. MQSeries Message

5 FMS-MQSeries
Adapter

The FMS-MQSeries Adapter executes the SQL
Statement contained in the MQSeries Message
against the FMS database. All insert SQL
statements are performed in a single transaction.
This adapter is the same adapter used for the
COD-FMS interface.

SQL Statement

6 FMS Tables Once the FMS-MQSeries adapter has placed the
detail records from the UTCL file into the
appropriate table, it is available for processing by
FMS.

Database Entry

7 FMS Application FMS Application retrieves the data from the table
and processes it.

Database Entry

7.3 Adapter Example

Messages are transferred from COD to FMS via MQSeries. The messages are put onto the queue on the
COD side by an adapter. On the FMS system messages are retrieved from the queue by an adapter and
written to an FMS database. These two adapters were written in Java and interface to MQSeries via AMI.
Error handling has been built into both adapters.

Name Description

1 COD The COD system

2 COD MQ Adapter A shared library that puts messages on the queue and handles errors.

3 MQ Series The MQ Series transport mechanism.

4 FMS MQ Adapter A utility for pulling messages off the queue , posting the message to the FMS data
transition table, and

 handling errors.

5 FMS The Financial Management System

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 87

8 REUSEABLE EAI FUNCTIONS

Reusable EAI functions described in the following section are application services that can be utilized by
applications integrated with the EAI Core Architecture. Additional reusable functions will be included as
they are developed and deployed in future EAI Core Architecture efforts.

8.1 EAI Common Log Function

The following outlines design and implementation information required to utilize the EAI Common Log
Function.

8.1.1 Interface Design Specification

Interface Name: EAI Common Log Function

Interface Type: Uni-Directional

Interface Short Description: This interface enables applications to record events to the local and
centralized logs.

Source Application: Any

Destination Application: Local and centralized logs.

Functional Requirement References: Message Logging

Related Interface Control Document: N/A

Related Unit Test Document: TBD

Other Related Interfaces: N/A

8.1.2 Interface Overview

Flow Diagram:

Centralized
Log
(4)

Application
(1)

MQSeries
(3)

Log function
(2)

Local Log
(5)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 88

Name Description

1 Application The source application

2 Log Function A library function that sends the log entry to the centralized and/or local logs.

3 MQ Series The MQ Series transport mechanism.

4 Centralized Log The centralized log repository.

5 Local Log The local log file.

8.1.2.1 Detailed Technical Overview

An application (1) generates an event that it needs to record. The application will call the log function
(2) according to the specified function signature. The log function creates a message. It then sends the
message via MQ Series (3) to the Centralized Log (4). The log function also records the event on the
local log (5).

8.1.2.2 Background EAI Logging Objectives

The “logging” framework will help standardize and simplify exception handling for FSA’s application
teams. The standardized exception handling will also help reduce the possibility of uncaught exception
scenarios.

An exception is a code or language construct that indicates when an unusual or unexpected error condition
occurs in an application. Examples of exceptions are hardware, network, I/O, or memory problems. If an
exception is “handled” in code, it can be dealt with gracefully and will not necessarily have to cause
program termination. Exception handling provides a mechanism for writing robust, resilient code that is
capable of dealing with the unexpected.

In addition to exception logging, the following categories were reviewed for consideration:

1. Performance Logging

2. Capture Service Level Agreement Metrics

3. Provide information for system tuning

4. Exception Logging

5. Provide clarity as to where the problem has occurred

6. Debugging/Tracing

7. Aid developers in development and testing

8. Score Card Logging

9. Provide overall transaction status; i.e file X was transferred from server A to server B

10. Alert Logging

11. Provide a mechanism to alert operations of a problem

Empirically it can be observed that information required when satisfying the varied logging requirements
overlap. For example information required to “Alert” operations of a problem will also aide in “Problem
Identification”.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 89

8.1.2.3 Logging Thresholds Provided via EAI Logging facility

Each message logged within the framework has a severity. A masking of this value determines whether the
Logger allows the message to continue to the destination.

The severities allowed within a message are:
• Debug Logging

− These are debugging messages usually placed by the programmers for the tracing and debugging
purposes.

• Informational Logging

− These are useful informational messages about what is occurring.

• Score Card Logging

− Provides an overall status of the interface request; for example a datagram message that originates from
NSLDS and terminates at COD would produce logging records for use as an audit mechanism (This
feature is not currently implemented).

• Warning Logging

− These messages warn that something abnormal has happened, but that the system will attempt to
recover from it. These messages are usually used by programmers to show that something is starting to
go wrong.

• Error Logging

− These messages state that something abnormal has occurred, but that it is not severe enough to cause
the system to fail in general. A specific task may fail and some users may get an error, but the system
will keep going. Exceptions are generally logged at this level.

− For example, if a Loggers mask is set to INFO, then any message that comes in with a severity that is
below INFO will be sent on to the destination. A message that has severity DEBUG will be ignored.
With this Log Mask, all info, warning, error, and fatal messages will show up at the destination.

INFO Log Mask

DEBUG

SCORE CARD

WARNING

ERROR

V
i
s
i
b
i
l
i
t
y

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 90

8.1.2.4 Configuration Parameters

The following configuration parameters are required for message logging.

Description Variable Example

Environment Variable identifying
location of configuration file and
name of configuration file

EAILOG_PATH C:\somedirectory\eailog\eailog.ini

Logging Threshold LOGGING_THRESHOLD 0 (Debug)

Log file path name LOGGING_PATH_NAME C:\somedirectory\eailog\
eailog.yyyymmdd.txt

Remote queue LOGGING_REMOTE_QUEUE EAI.LOG

8.1.2.5 Component Model

The following function calls form the public interface of the Error logging subcomponent. These public
interfaces will be published on the following platforms:

- Solaris

- HP-UX

- OS/390

- OpenVMS (no AMI)

1. For AMI enabled platforms, logging will be invoked via AMI’s “Policy Handler Interface”. “Policy
Handler” eliminates the need for EAI BUS developers to invoke the logging facility for interactions that
utilize MQSeries resources. “Policy Handler Post Transport Request Invocations” will be utilized to
execute the logging mechanism.

Post-transport requests:

Post-MQBACK

Post-MQBEGIN

Post-MQCLOSE

Post-MQCMIT

Post-MQCONN

Post-MQCONNX

Post-MQDISC

Post-MQGET

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 91

Post-MQINQ

Post-MQOPEN

Post-MQPUT

Post-MQPUT1

Post-MQSET.

2. C/C++ function interface:

long EAILog(

 long lSeverity,

 char *msgCode,

 char *msgText,

 char *interfaceid);

3. A Java interface (JNI).

public class EAIMSGLOG {

 public native int eaiLog(long severity,

 String msgCode,

 String msgText,

 String interfaceid);

package gov.ed.eailog;

8.1.3 Design Assumptions

ASSUMPTIONS
1 The application is expected to call the log function whenever an event needs to be logged. At a minimum,

informational logging will occur post-transport request.
2 The application is expected to call the log function according to the specified function signature.
3 Each application using this API is expected to install and configure MQ Series v5.2 (OpenVMS excluded).
4 EAI BUS File Transfer product includes a logging mechanism.
5 MQSeries 5.2 is not supported on OpenVMS, therefore all logging must be coded by the developer
6 Applications must use this mechanism within EAI adapters; at a minimum this will be called at the start and

end of a adapter
7 All servers must have a C/C++ compiler
8 A COTS mqseries monitoring tool will be utilized

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 92

8.1.4 Design Dependencies

DEPENDENCIES
1 MQSeries 5.2
2 AMI Support Pack

8.1.5 Detailed Technical Design

Component Name: EAI Common Log Function
Related Interface Control Document: N/A
Technical Design Description: Applications will call the EAI Common Log Function according to the
previously specified function signature:

Field Descriptions:
Message logging output file description:

 Description Informational
Logging

Exception Logging Score Card Logging

Version the version of the
EAILogStruct
definition being
used; currently

1 1 1

Severity the severity of the
message being
logged; valid
values are:
00 – Debug
04 – Score Card
08 - Informational
12 – warning
16 – error

msgCode a freeform field for
error codes;
typically a
MQSeries error
code

blank MQRC=9999 MQRC=9999

MsgText a freeform field for
the error
description;

function/method
name for
informational
messages

MQRC_XXX_XXX_XXX MQRC_XXX_XXX_XXX

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 93

interfaceId interface control
document

Interface Control
Id

Interface Control Id Interface Control Id

instance occurrence of a
transaction

Hash value

Hash value

Hash Value

System hostname of the
system generating
the error

Hostname Hostname Hostname

programId Program id Program_id Program_id Program_id

ReturnCode specifies the status
of the function
upon completion;
valid values are:

0 – success

1 – unable to log
message

Message logging functions generate a file delimited as follows:

<Version> <hostname> <program_name> <Instance> <date_time> <severity> <interface_id>
<message text> <return code>

Error Handling:

Type Reporting/Communication
 Method

Message

1 Error – continue processing Return code Unable to locate EAILOG environment
variable.

2 Error – continue processing Return code Unable to send message to centralized log.
3 Error – continue processing Return code Unable to read control record information.
4 Error – continue processing Return code Unable to write to local log.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 94

9 COMMITTING AND BACKING OUT UNITS OF WORK
This section describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work. The following terms, described below, are used in this section:

• Commit
• Back out
• Syncpoint coordination
• Syncpoint
• Unit of work
• Single-phase commit
• Two-phase commit

9.1 Committing and Backing Out
When a program puts a message on a queue within a unit of work, that message is made visible to other
programs only when the program commits the unit of work. To commit a unit of work, all updates must be
successful to preserve data integrity. If the program detects an error and decides that the put operation
should not be made permanent, it can back out the unit of work. When a program performs a back out,
MQSeries restores the queue by removing the messages that were put on the queue by that unit of work.
The way in which the program performs the commit and back out operations depends on the environment in
which the program is running.

When a program gets a message from a queue within a unit of work, that message remains on the queue
until the program commits the unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the program commits the unit of work.
If the program backs out the unit of work, MQSeries restores the queue by making the messages available
to be retrieved by other programs. Changes to queue attributes (either by the MQSET call or by
commands) are not affected by the committing or backing out of units of work.

9.2 Syncpoint Coordination, Syncpoint, Unit of Work
Syncpoint coordination is the process by which units of work are either committed or backed out with data
integrity. The decision to commit or back out the changes is taken, in the simplest case, at the end of a
transaction. However, it can be more useful for an application to synchronize data changes at other logical
points within a transaction. These logical points are called syncpoints (or synchronization points) and the
period of processing a set of updates between two syncpoints is called a unit of work. Several MQGET
calls and MQPUT calls can be part of a single unit of work. The maximum number of messages within a
unit of work can be controlled by the DEFINE MAXSMSGS command on OS/390, or by the
MAXUMSGS attribute of the ALTER QMGR command on other platforms. See the MQSeries Command
Reference book for details of these commands.

9.3 Syncpoint Guidelines
A MQSeries application can specify on every put and get call whether the call is to be under syncpoint
control. To make a put operation operate under syncpoint control, use the MQPMO_SYNCPOINT value
in the Options field of the MQPMO structure when calling MQPUT. For a get operation, use the

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 95

MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If not explicitly choosing an
option, the default action depends on the platform. The syncpoint control default on OS/390 and Tandem
NSK is ‘yes’; for all other platforms, it is ‘no’.

If a program issues the MQDISC call while uncommitted requests exist, an implicit syncpoint occurs,
except on OS/390 batch with RRS. If the program ends abnormally, an implicit backout occurs. On
OS/390, an implicit syncpoint occurs if the program ends normally without first calling MQDISC.

For MQSeries for OS/390 programs, use the MQGMO_MARK_SKIP_BACKOUT option to specify that
a message should not be backed out if backout occurs (in order to avoid an ‘MQGET-error-backout’ loop).

9.3.1 Syncpoints in MQSeries for Windows NT, MQSeries on UNIX systems
Syncpoint support operates on two types of units of work: local and global. A local unit of work is one in
which the only resources updated are those of the MQSeries queue manager. Here syncpoint coordination is
provided by the queue manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases,
are also updated. MQSeries can coordinate such units of work itself or the units of work can also be
coordinated by an external commitment controller such as another transaction manager.

For full integrity, a two-phase commit procedure must be used. Two-phase commit can be provided by XA-
compliant transaction managers and databases such as IBM’s TXSeries and UDB. MQSeries Version 5
products (except MQSeries for OS/390) can coordinate global units of work using a two-phase commit
process.

9.3.2 Local units of work
Units of work that involve only the queue manager are called local units of work. Syncpoint coordination
is provided by the queue manager itself (internal coordination) using a single-phase commit process. To
start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the
appropriate syncpoint option. The unit of work is committed using MQCMIT or rolled back using
MQBACK. However, the unit of work also ends when the connection between the application and the
queue manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of work is still active, the unit
of work is committed. If, however, the application terminates without disconnecting, the unit of work is
rolled back as the application is deemed to have terminated abnormally.

9.3.3 Global units of work
Use global units of work when needing to include updates to resources belonging to other resource
managers. Here the coordination may be internal or external to the queue manager:

9.3.4 Internal syncpoint coordination
Queue manager coordination of global units of work is supported only on MQSeries Version 5 products
except for MQSeries for OS/390. It is not supported in a MQSeries client environment. Here, the
coordination is performed by MQSeries. To start a global unit of work, the application issues the
MQBEGIN call.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 96

As input to the MQBEGIN call, supply the connection handle (Hconn), which is returned by the
MQCONN or MQCONNX call. This handle represents the connection to the MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate
syncpoint option. This means that MQBEGIN can be used to initiate a global unit of work that updates
local resources, resources belonging to other resource managers, or both. Updates made to resources
belonging to other resource managers are made using the API of that resource manager. However, it is not
possible to use the MQI to update queues that belong to other queue managers. MQCMIT or MQBACK
must be issued before starting further units of
work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase commit of all the resource
managers involved in the unit of work. A two-phase commit process is used whereby resource managers
(for example, XA-compliant database managers such as DB2, Oracle, and Sybase) are firstly all asked to
prepare to commit. If any resource manager signals that it cannot commit, each is asked to back out
instead. Alternatively, MQBACK can be used to roll back the updates of all the resource managers.

If an application disconnects (MQDISC) while a global unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work is rolled back as
the application is deemed to have terminated abnormally. The output from MQBEGIN is a completion code
and a reason code. When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included. If there are no participating
resource managers (that is, no resource managers have been configured with the queue manager) or one or
more resource managers are not available, the call starts a unit of work and completes with a warning.

In these cases, the unit of work should include updates to only those resource managers that were available
when the unit of work was started. If one of the resource managers is unable to commit its updates, all of
the resource managers are instructed to roll back their updates, and MQCMIT completes with a warning.
In unusual circumstances (typically, operator intervention), a MQCMIT call may fail if some resource
managers commit their updates but others roll them back; the work is deemed to have completed with a
‘mixed’ outcome. Such occurrences are diagnosed in the error log of the queue manager so remedial action
may be taken. A MQCMIT of a global unit of work succeeds if all of the resource managers involved
commit their updates. For a description of the MQBEGIN call, see the MQSeries Application
Programming Reference manual.

9.3.5 External syncpoint coordination
External syncpoint coordination occurs when a syncpoint coordinator other than MQSeries (e.g. CICS,
Encina, and Tuxedo) has been selected. MQSeries on a UNIX system or MQSeries for Windows NT will
register its interest in the outcome of the unit of work, with the syncpoint coordinator. This happens in
order to commit or roll back any uncommitted get or put operations as required. The external syncpoint
coordinator determines whether one- or two-phase commitment protocols are provided. When an external
coordinator is used MQCMIT, MQBACK, and MQBEGIN may not be issued. Calls to these functions
fail with the reason code MQRC_ENVIRONMENT_ERROR. The way in which an externally coordinated
unit of work is started is dependent on the programming interface provided by the syncpoint coordinator.
An explicit call may, or may not, be required. If an explicit call is required, and the MQPUT call
specifying the MQPMO_SYNCPOINT option is specified when a unit of work is not started, the
completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 97

The syncpoint coordinator determines the scope of the unit of work. The state of the connection between the
application and the queue manager affects the success or failure of MQI calls that an application issues,
not the state of the unit of work. It is, for example, possible for an application to disconnect and reconnect
to a queue manager during an active unit of work and perform further MQGET and MQPUT operations
inside the same unit of work. This is known as a pending disconnect.

9.3.6 Interfaces to external syncpoint managers
MQSeries on UNIX systems and MQSeries for Windows NT support coordination of transactions by
external syncpoint managers which utilize the X/Open XA interface. This support is available only on
server configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that each XA resource
manager supply its name. This is the string called name in the XA switch structure. The resource manager
for MQSeries on UNIX systems is named “MQSeries_XA_RMI”. For further details on XA interfaces
refer to XA documentation CAE Specification Distributed Transaction Processing: The XA Specification,
published by The Open Group.

In an XA configuration, MQSeries on UNIX systems and MQSeries for Windows NT fulfill the role of an
XA Resource Manager. An XA syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers.

For a statically-registered resource manager:

1. An application notifies the syncpoint coordinator that it wishes to start a transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them
of the current transaction.

3. The application issues calls to update the resources managed by the resource managers associated
with the current transaction.

4. The application requests that the syncpoint coordinator either commits or rolls back the
transaction.

5. The syncpoint coordinator issues calls to each resource manager using two-phase commit protocols
to complete the transaction as requested. The XA specification requires each Resource Manager to
provide a structure called an XA Switch. This structure declares the capabilities of the Resource
Manager, and the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management

The structure is found in the following libraries:
mqmxa.lib

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 98

Windows NT XA library for Static resource management
mqmenc.lib
Sun Solaris and Windows NT Encina XA library for Dynamic resource management
libmqmxa.a
UNIX systems XA library (non-threaded) for both Static and Dynamic
resource management
libmqmxa_r.a
UNIX systems (except Sun Solaris) XA library (threaded) for both Static and Dynamic resource
management. The method that must be used to link them to an XA syncpoint coordinator is defined by the
coordinator. Also, consult the documentation provided by that coordinator to determine how to enable
MQSeries to cooperate with the XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator should be the name
of the queue manager that is to be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and may be blank if the default queue manager is to be used.

9.4 MQSeries Syncpoint Calls for OS/390
MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these calls in OS/390 batch
programs to tell the queue manager that all the MQGET and MQPUT operations since the last syncpoint
are to be made permanent (committed) or are to be backed out. To commit and back out changes in other
environments:

CICS use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate.

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, and are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as synonyms for
MQCMIT and MQBACK. These are described fully in the MQSeries Application Programming
Reference manual.

9.5 MQSeries Syncpoint Calls on Windows NT and UNIX systems
The following products provide the MQCMIT and MQBACK calls:

• MQSeries for Windows NT
• MQSeries on UNIX systems

Use syncpoint calls in programs to tell the queue manager that all the MQGET and MQPUT operations
since the last syncpoint are to be made permanent (committed) or are to be backed out. To commit and

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 99

back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

9.6 Single-phase Commit
A single-phase commit process is one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

9.7 Two-phase Commit
A two-phase commit process is one in which updates that a program has made to MQSeries queues can be
coordinated with updates to other resources (for example, databases under the control of DB2). Under such
a process, updates to all resources are committed or backed out together. To help handle units of work,
MQSeries provides the BackoutCount attribute. This is incremented each time a message, within a unit of
work, is backed out. If the message repeatedly causes the unit of work to abend, the value of the
BackoutCount finally exceeds that of the BackoutThreshold. This value is set when the queue is defined.
In this situation, the application can choose to remove the message from the unit of work and put it onto
another queue, as defined in BackoutRequeueQName . When the message is moved, the unit of work can
commit.

Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can participate in two-phase commit,
coordinated with other recoverable resources. This means that the queuing functions provided by MQSeries
can be brought within the scope of a unit of work, managed by the transaction manager.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 100

10 APPENDIX A: REFERENCE MATERIAL

For more information on the software and hardware prerequisites for the OS/390, please refer to the
“MQSeries for OS/390 v5.2 Program Directory” and the “MQSeries for OS/390 v5.2 Concepts and
Planning Guide” books on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on WebSphere Application Server prerequisites, please refer to the “MQSeries for
Windows NT and 2000 Quick Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on EAI BUS prerequisites, please refer to the “MQSeries for Windows NT and 2000
Quick Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on DLSS prerequisites, please refer to the “MQSeries for Compaq (DIGITAL)
OpenVMS System Management” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on PEPS prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on BTrade prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa.

For more information on how to customize MQSeries objects for application specific requirements, please
refer to the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on MQSeries application error handling, event monitoring and MQSI error handling,
please refer to the following books:
“MQSeries Application Programming Reference”
“MQSeries Event Monitoring”
“MQSeries Integrator Introduction and Planning”
on the IBM website: http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 101

For more information on managing clusters and developing a custom cluster workload exit, please refer to
the “MQSeries Queue Manager Clusters” book on the IBM website:

http://www-4.ibm.com/software/ts/mqseries/library/manuals

For more information on the MQSeries Integrator Control Center and the MQSeries commands and control
commands, please refer to the following books:
“MQSeries Integrator Using the Control Center”
“MQSeries MQSC Command Reference”
“MQSeries Systems Administration”
“MQSeries for Compaq (DIGITAL) OpenVMS System Management”
“MQSeries for OS/390 System Administration Guide”
on the IBM website: http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on the MQSI configuration manger, please refer to the “MQSeries Integrator Using
the Control Center” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

MQSeries Application Programming Guide can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Programming Reference can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Messaging Interface manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using C++ manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using Java manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 102

11 APPENDIX B: GLOSSARY

A
ACS

Affiliated Computer Systems. The company that manages the DLSS system located in Rockville, MD.

active log

See recovery log.

AIS
Application Information Services

adapter
An adapter is an attachment facility (program) that enables applications to access MQSeries services.
More specifically an adapter is used to isolate an application implementing an interface which manages
format conversions and application specific behavior.

alias queue object
A MQSeries object, the name of which is an alias for a base queue defined to the local queue manager.
When an application or a queue manager uses an alias queue, the alias name is resolved and the
requested operation is performed on the associated base queue.

alternate user security
A security feature in which the authority of one user ID can be used by another user ID; for example,
to open a MQSeries object.

AMI
Application Message Interface. An MQSeries term.

API
Application Programming Interface.

archive log
See recovery log.

asynchronous messaging
A method of communication between programs in which programs place messages on message queues.
With asynchronous messaging, the sending program proceeds with its own processing without waiting
for a reply to its message. Contrast with synchronous messaging.

authorization service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a service
that provides authority checking of commands and MQI calls for the user identifier associated with the
command or call.

B
BLOB

An MQSI message domain where all unstructured messages are contained.

bootstrap data set (BSDS)
A VSAM data set that contains:

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 103

• An inventory of all active and archived log data sets known to MQSeries for OS/390
• A wrap-around inventory of all recent MQSeries for OS/390 activity

The BSDS is required if the MQSeries for OS/390 subsystem has to be restarted.

browse
In message queuing, to use the MQGET call to copy a message without removing it from the queue.
See also get.

browse cursor
In message queuing, an indicator used when browsing a queue to identify the message that is next in
sequence.

BSDS
Bootstrap data set.

bTrade
A 3rd party vendor to FSA that provides a product to send files across the internet and allows the data
to be compressed and encrypted.

C
CCF

Custom Connector Framework

channel
See message channel.

channel definition file (CDF)
In MQSeries, a file containing communication channel definitions that associate transmission queues
with communication links.

channel event
An event indicating that a channel instance has become available or unavailable. Channel events are
generated on the queue managers at both ends of the channel.

checkpoint
A time when significant information is written on the log. Contrast with syncpoint. In MQSeries on
UNIX systems, the point in time when a data record described in the log is the same as the data record
in the queue. Checkpoints are generated automatically and are used during the system restart process.

circular logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping all restart data in a ring of log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this point, logging goes back to the first file in the
ring and starts again, if the space has been freed or is no longer needed. Circular logging is used during
restart recovery, using the log to roll back transactions that were in progress when the system stopped.
Contrast with linear logging.

CISC
Customer Information Control System. A subsystem of the OS/390 computing platform.

client
A run-time component that provides access to queuing services on a server for local user applications.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 104

The queues used by the applications reside on the server. See also MQSeries client.

client application
An application, running on a workstation and linked to a client, that gives the application access to
queuing services on a server.

cluster
A network of queue managers that are logically associated in some way.

CPS
Central Processing System.

COD
Common Origination and Distribution System.

command
In MQSeries, an administration instruction that can be carried out by the queue manager.

command server
The MQSeries component that reads commands from the system-command input queue, verifies them,
and passes valid commands to the command processor.

connect
To provide a queue manager connection handle, which an application uses on subsequent MQI calls.
The connection is made either by the MQCONN call, or automatically by the MQOPEN call.

context
Information about the origin of a message.

context security
In MQSeries, a method of allowing security to be handled such that messages are obliged to carry
details of their origins in the message descriptor.

control command
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a
command that can be entered interactively from the operating system command line. Such a command
requires only that the MQSeries product be installed; it does not require a special utility or program to
run it.

COTS
Custom Off The Shelf. Usually used in reference to software.

CSC
Computer Sciences Corporation. Company which hosts and manages the systems located in Meriden,
CT.

CWF
Custom Wire Format

D
data bag

In the MQAI, a bag that allows you to handle properties (or parameters) of objects.

data conversion interface (DCI)
The MQSeries interface to which customer- or vendor-written programs that convert application data

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 105

between different machine encodings and CCSIDs must conform. A part of the MQSeries Framework.

DB2
A relational database marketed by IBM. Also known as UDB or Universal Database.

DCI
Data conversion interface.

dead-letter queue (DLQ)
A queue to which a queue manager or application sends messages that it cannot deliver to their correct
destination.

dead-letter queue handler
A MQSeries-supplied utility that monitors a dead-letter queue (DLQ) and processes messages on the
queue in accordance with a user-written rules table.

DHCP
Dynamic Host Configuration Protocol

DI
Data Integrator. Product used for file transfer utilizing MQSeries as the message transport.

distributed queue management (DQM)
In message queuing, the setup and control of message channels to queue managers on other systems.

DLSS
Direct Loan Servicing System.

DMZ
Demilitarized Zone

DPL
Distributed Program Load

DTD
Document Type Definition – an MQSI component.

DLQ
Dead-letter queue.

dual logging
A method of recording MQSeries for OS/390 activity, where each change is recorded on two data sets,
so that if a restart is necessary and one data set is unreadable, the other can be used. Contrast with
single logging.

dynamic queue
A local queue created when a program opens a model queue object. See also permanent dynamic queue
and temporary dynamic queue.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 106

E
EAI

Enterprise Application Integration

ECB
ECampus Based System

EID - Enterprise Integration Domain

One of five domains within IAFeB developed to provide an enterprise-wide scalable framework that
allows multiple front-end applications (such as web and call centers) to inter-operate with back-end
applications (such as policy administration and claims systems) in an effective and efficient manner.

EJB
Enterprise Java Bean

ESQL
Extended Structured Query Language

event data

In an event message, the part of the message data that contains information about the event (such as the
queue manager name, and the application that gave rise to the event). See also event header.

event message
Contains information (such as the category of event, the name of the application that caused the event,
and queue manager statistics) relating to the origin of an instrumentation event in a network of
MQSeries systems.

event queue
The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (queue manager, performance, or channel event) has its own event queue.

F
FIFO

First In First Out

FMS
Financial Management System

Framework

In MQSeries, a collection of programming interfaces that allow customers or vendors to write
programs that extend or replace certain functions provided in MQSeries products. The interfaces are:

• MQSeries data conversion interface (DCI)
• MQSeries message channel interface (MCI)
• MQSeries name service interface (NSI)
• MQSeries security enabling interface (SEI)
• MQSeries trigger monitor interface (TMI)

FSA
Federal Student Aid

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 107

G
get

In message queuing, to use the MQGET call to remove a message from a queue. See also browse.

H
HACMP

High Availability Cluster Multi-Processing - IBM's high availability offering for AIX platforms to
provide dynamic fail-over within a cluster of separate AIX systems.

I
IAA

Insurance Application Architecture. Insurance business object model.

IAFeB
Insurance architecture for e-business. Framework of common insurance specific functionality built on
top MQSeries and MQSeries Integrator. Used by insurance companies to build eBusiness/integration
systems.

IBM
International Business Machines

 in-doubt unit of recovery
In MQSeries, the status of a unit of recovery for which a syncpoint has been requested but not yet
confirmed.

initiation queue
A local queue on which the queue manager puts trigger messages.

installable services
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, additional
functionality provided as independent components. The installation of each component is optional: in-
house or third-party components can be used instead. See also authorization service, name service,
and user identifier service.

instrumentation event
A facility that can be used to monitor the operation of queue managers in a network of MQSeries
systems. MQSeries provides instrumentation events for monitoring queue manager resource definitions,
performance conditions, and channel conditions. Instrumentation events can be used by a user-written
reporting mechanism in an administration application that displays the events to a system operator.

ITA
Integrated Technical Architecture

J
JMS

Java Messaging Service

L
LDAP

Lightweight directory access protocol.

linear logging

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 108

In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files. New files are added to the sequence as necessary.
The space in which the data is written is not reused until the queue manager is restarted. Contrast with
circular logging.

listener
In MQSeries distributed queuing, a program that monitors for incoming network connections.

local definition
A MQSeries object belonging to a local queue manager.

local definition of a remote queue
A MQSeries object belonging to a local queue manager. This object defines the attributes of a queue
that is owned by another queue manager. In addition, it is used for queue-manager aliasing and reply-
to-queue aliasing.

local queue
A queue that belongs to the local queue manager. A local queue can contain a list of messages waiting
to be processed. Contrast with remote queue.

local queue manager
The queue manager to which a program is connected and that provides message queuing services to the
program. Queue managers to which a program is not connected are called remote queue managers,
even if the queue managers are running on the same system as the program.

log
In MQSeries, a file recording the work done by queue managers while the queue managers receive,
transmit, and deliver messages. The log file is used to recover in the event of failure.

log control file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the file
containing information needed to monitor the use of log files (for example, their size and location, and
the name of the next available file).

log file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a queue manager are recorded. If the primary log
files become full, MQSeries allocates secondary log files.

M
message

In message queuing applications, a communication sent between programs. See also persistent
message and nonpersistent message. In system programming, information intended for the terminal
operator or system administrator.

message channel
In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender at one end and a receiver
at the other end) and a communication link. Contrast with MQI channel.

message channel agent (MCA)
A program that transmits prepared messages from a transmission queue to a communication link, or
from a communication link to a destination queue. See also message queue interface.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 109

message channel interface (MCI)
The MQSeries interface to which customer- or vendor-written programs that transmit messages
between a MQSeries queue manager and another messaging system must conform. A part of the
MQSeries Framework.

message descriptor
Control information describing the message format and presentation that is carried as part of a
MQSeries message. The format of the message descriptor is defined by the MQMD structure.

message priority
In MQSeries, an attribute of a message that can affect the order in which messages on a queue are
retrieved, and whether a trigger event is generated.

message queue
Synonym for queue.

message queue interface (MQI)
The programming interface provided by the MQSeries queue managers. This programming interface
allows application programs to access message queuing services.

message queuing
A programming technique in which each program within an application communicates with the other
programs by putting messages on queues.

messaging
See synchronous messaging and asynchronous messaging.

model queue object
A set of queue attributes that act as a template when a program creates a dynamic queue.

MQOD
MQSeries Object Descriptor. The MQOD structure is used to specify an object by name. The
structure is an input/output parameter on the MQOPEN and MQPUT1 calls.
The following types of object are valid:

• Queue or distribution list
• Namelist
• Process definition
• Queue manager

MQSeries – Message Queue Series

A family of IBM licensed programs that provides message queuing services across a broad array of
operating system platforms and network protocols.

MQSeries Administration Interface (MQAI)
A programming interface to MQSeries.

MQSeries client
Part of a MQSeries product that can be installed on a system without installing the full queue manager.
The MQSeries client accepts MQI calls from applications and communicates with a queue manager on
a server system.

MQSeries commands (MQSC)
Human readable commands, uniform across all platforms, that are used to manipulate MQSeries

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 110

objects. Contrast with programmable command format (PCF).

MQSI - MQSeries Integrator
Second generation message broker product the provides basic message routing and data translation
capabilities.

MQWF
MQSeries Workflow. A workflow product built to executed long running transactions and other
workflow functions over a MQSeries foundation.

MRM
Message Respository Manager. A component of the Configuration Manager that manages MQSI
messages.

MVS
Multiple Virtual System

N
namelist

A MQSeries object that contains a list of names, for example, queue names.

name service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
facility that determines which queue manager owns a specified queue.

name service interface (NSI)
The MQSeries interface to which customer- or vendor-written programs that resolve queue-name
ownership must conform. A part of the MQSeries Framework.

NEON
New Era of Networks. MQSI interface available through the Control Center.

nonpersistent message
A message that does not survive a restart of the queue manager. Contrast with persistent message.

NSLDS
National Student Loan Data System

O
OAMAS

Open Applications Group Middleware API Specifications

OAG
Open Applications Group. The Open Applications Group is a non-profit consortium focusing on best
practices and processes based on XML content for eBusiness and Application Integration.

object
In MQSeries, an object is a queue manager, a queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM)
In MQSeries on UNIX systems, MQSeries for AS/400, and MQSeries for Windows NT, the default
authorization service for command and object management. The OAM can be replaced by, or run in

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 111

combination with, a customer-supplied security service.

output log-buffer
In MQSeries for OS/390, a buffer that holds recovery log records.

P
page set

A VSAM data set used when MQSeries for OS/390 moves data (for example, queues and messages)
from buffers in main storage to permanent backing storage (DASD).

PCF
Programmable Command Format. The purpose of MQSeries programmable command format (PCF)
commands is toallow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue managers, from a program.

PDF

Specialized message format used in MQSI and predominately found in the finance industry.

PEPS
Post-Secondary Education Participants System

performance event
A category of event indicating that a limit condition has occurred.

persistent message
A message that survives a restart of the queue manager. Contrast with nonpersistent message.

platform
In MQSeries, the operating system under which a queue manager is running.

point of recovery
In MQSeries for OS/390, the term used to describe a set of backup copies of MQSeries for OS/390
page sets and the corresponding log data sets required to recover these page sets. These backup copies
provide a potential restart point in the event of page set loss (for example, page set I/O error).

principal
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority manager for checking authorizations to system
resources.

process definition object
A MQSeries object that contains the definition of a MQSeries application. For example, a queue
manager uses the definition when it works with trigger messages.

programmable command format (PCF)
A type of MQSeries message used by:

• User administration applications, to put PCF commands onto the system command input queue
of a specified queue manager

• User administration applications, to get the results of a PCF command from a specified queue
manager

• A queue manager, as a notification that an event has occurred

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 112

Contrast with MQSC.

Q
queue

A MQSeries object. Message queuing applications can put messages on, and get messages from, a
queue. A queue is owned and maintained by a queue manager. Local queues can contain a list of
messages waiting to be processed.

queue manager
A system program that provides queuing services to applications. It provides an application
programming interface so that programs can access messages on the queues that the queue manager
owns. See also local queue manager and remote queue manager. A MQSeries object that defines the
attributes of a particular queue manager.

queuing
See message queuing.

R
recovery log

In MQSeries for OS/390, data sets containing information needed to recover messages, queues, and the
MQSeries subsystem. MQSeries for OS/390 writes each record to a data set called the active log.
When the active log is full, its contents are off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

remote queue
A queue belonging to a remote queue manager. Programs can put messages on remote queues, but
cannot get messages from remote queues. Contrast with local queue.

remote queue manager
To a program, a queue manager that is not the one to which the program is connected.

remote queue object
See local definition of a remote queue.

remote queuing
In message queuing, the provision of services to enable applications to put messages on queues
belonging to other queue managers.

reply message
A type of message used for replies to request messages.

request message
A type of message used to request a reply from another program.

RESLEVEL
In MQSeries for OS/390, an option that controls the number of CICS user IDs checked for API-
resource security in MQSeries for OS/390.

return codes
The collective name for completion codes and reason codes.

RRS
Resource Recovery Service

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 113

S
SAIG

Student Aid Internet Gateway

security enabling interface (SEI)
The MQSeries interface to which customer- or vendor-written programs that check authorization,
supply a user identifier, or perform authentication must conform. A part of the MQSeries Framework.

server
(1) In MQSeries, a queue manager that provides queue services to client applications running on a
remote workstation. (2) The program that responds to requests for information in the particular two-
program, information-flow model of client/server. See also client.

signaling
In MQSeries for OS/390 and MQSeries for Windows 2.1, a feature that allows the operating system to
notify a program when an expected message arrives on a queue.

single logging
A method of recording MQSeries for OS/390 activity where each change is recorded on one data set
only. Contrast with dual logging.

SQL
Structured Query Language. A database language used to query databases.

synchronous messaging
A method of communication between programs in which programs place messages on message queues.
With synchronous messaging, the sending program waits for a reply to its message before resuming its
own processing. Contrast with asynchronous messaging.

system.command.input queue
A local queue on which application programs can put MQSeries commands. The commands are
retrieved from the queue by the command server, which validates them and passes them to the
command processor to be run.

T
TCP/IP

Transmission Control Protocol / Internet Protocol.

thread
In MQSeries, the lowest level of parallel execution available on an operating system platform.

trace
In MQSeries, a facility for recording MQSeries activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See also global trace and performance trace.

transmission queue
A local queue on which prepared messages destined for a remote queue manager are temporarily
stored.

trigger event
An event (such as a message arriving on a queue) that causes a queue manager to create a trigger
message on an initiation queue.

triggering
In MQSeries, a facility allowing a queue manager to start an application automatically when

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 114

predetermined conditions on a queue are satisfied.

trigger message
A message containing information about the program that a trigger monitor is to start.

trigger monitor
A continuously-running application serving one or more initiation queues. When a trigger message
arrives on an initiation queue, the trigger monitor retrieves the message. It uses the information in the
trigger message to start a process that serves the queue on which a trigger event occurred.

trigger monitor interface (TMI)
The MQSeries interface to which customer- or vendor-written trigger monitor programs must conform.
A part of the MQSeries Framework.

TSYS
Total System. A vendor which manages the COD environment.

U
undelivered-message queue

See dead-letter queue.

unit of recovery
A recoverable sequence of operations within a single resource manager. Contrast with unit of work.

unit of work
A recoverable sequence of operations performed by an application between two points of consistency.
A unit of work begins when a transaction starts or after a user-requested syncpoint. It ends either at a
user-requested syncpoint or at the end of a transaction. Contrast with unit of recovery.

URL
Uniform Resource Locator.

UTCL
Unpaid Teacher Cancellation Policies.

user identifier service (UIS)

In MQSeries for OS/2 Warp, the facility that allows MQI applications to associate a user ID, other
than the default user ID, with MQSeries messages.

utility
In MQSeries, a supplied set of programs that provide the system operator or system administrator with
facilities in addition to those provided by the MQSeries commands. Some utilities invoke more than one
function.

V
VAJ

Visual Age for Java. A Java programming development environment offered by IBM.

VTAM
Virtual Terminal Access Manager.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (PRELIMINARY)

6/28/02 80.1.4a 115

W
WAS

WebSphere Application Server.

X
XA

XA interface is a specification that describes the protocol for transaction coordination, commitment,
and recovery between a transaction manager and one or more resource managers.

XML
Extensible markup language

